universal primer
Recently Published Documents


TOTAL DOCUMENTS

274
(FIVE YEARS 85)

H-INDEX

30
(FIVE YEARS 2)

Plant Disease ◽  
2022 ◽  
Author(s):  
Jinhui Wang ◽  
Yuxiang Lu ◽  
Wanxin Han ◽  
Lijun Fu ◽  
Xiaoqing Han ◽  
...  

In August 2020, ginger (Zingiber officinale) rhizomes (cv. Mianjiang) showing soft rot symptoms were observed in a field in Tayang Village, Fengrun District, Tangshan, Hebei Province (North China). The disease incidence in that field (15 ha in size) was more than 20%. Symptomatic rhizomes (brown and water-soaked) were surface-sterilized in 75% ethanol for 60 sec and then three successive rinses with sterile distilled water. Rhizomes were cut into pieces ca. 0.5 cm in length, and then were soaked in 500 µl 0.9% saline for 20 min. Aliquots (20 μl) of three tenfold dilutions of the tissue specimen soaking solution were plated onto the lysogeny broth (LB) medium. And LB plates were incubated at 28°C for 24 h. Five single colonies were picked from each LB plate and restreaked three times for purity. Endophytic bacteria were also isolated from asymptomatic rhizomes as control. The bacterial gDNA was extracted using the EasyPure Bacteria Genomic DNA Kit (TransGen Biotech, Beijing, China). The 16S rDNA region was amplified by PCR using the universal primer pair 27F/1492R (Weisburg et al. 1991) and sequenced. The results of BLASTN against NCBI nr of the 16S rDNA amplicons suggested that the most isolates (8/10) obtained from the rotten rhizomes belonged to the genus Pectobacterium, and few isolates (2/10) were Enterobacter spp.. Only Enterobacter spp. were isolated from asymptomatic rhizomes. Since all Pectobacterium isolates showed identical 16S rDNA sequence, thus, only two isolates were selected for further analysis. Pectobacterium isolates TS20HJ1 and TS20HJ2 (MZ853520, MZ853521) represent isolates from two plant individuals. To determine the species of the rhizome rot Pectobacterium isolates, multi-locus sequence analysis (MLSA) was performed with five housekeeping genes acnA, icdA, mdh, proA and rpoS (MZ994717-MZ994726) (Ma et al. 2007; Waleron et al. 2008), and a phylogenetic tree was reconstructed using RAxML v8.2.12 (github.com/stamatak/standard-RAxML). No sequence variation was observed at any MLSA locus between the two isolates. The result of phylogenetic analysis showed that the ginger rhizome isolates clustered with P. brasiliense type strain IBSBF1692T (Duarte et al. 2004; Nabhan et al. 2012). Ginger seedlings (cv. Mianjiang) were inoculated with the isolate TS20HJ1 by injecting 10 µl of bacterial suspensions (108 CFU·mL-1) into the rhizomes, or injected with 10 µl of 0.9% saline solution as control. The seedlings were grown at 28°C and 50% relative humidity. Ten days after inoculation, only the bacteria-inoculated rhizomes showed diseased symptoms resembling to those observed in the field. Bacterial colonies were obtained from the infected rhizomes and were identified with MLSA gene sequencing, fulfilling Koch’s postulates. P. brasiliense causes soft rot of a wide range of economically important crops (Oulghazi et al. 2021). To our knowledge, this is the first report of P. brasiliense causing rhizome rot of ginger in China. The rhizome rot caused 20-25% yield loss on average in Tangshan region in 2020, which poses a significant threat to the local ginger farming. Further research on epidemiology and disease management options is needed.


2022 ◽  
Vol 82 ◽  
Author(s):  
A. N. AL Abedy ◽  
B. H. AL Musawi ◽  
H. I. N. AL Isawi ◽  
R. G. Abdalmoohsin

Abstract This study was conducted at the Agriculture College University of Karbala, Iraq to isolate and morphologically and molecularly diagnose thirteen Cladosporium isolates collected from tomato plant residues present in desert regions of Najaf and Karbala provinces, Iraq. We diagnosed the obtained isolates by PCR amplification using the ITS1 and ITS4 universal primer pair followed by sequencing. PCR amplification and analysis of nucleotide sequences using the BLAST program showed that all isolated fungi belong to Cladosporium sphaerospermum. Analysis of the nucleotide sequences of the identified C. sphaerospermum isolates 2, 6, 9, and 10 showed a genetic similarity reached 99%, 98%, 99%, and 99%, respectively, with those previously registered at the National Center for Biotechnology Information (NCBl). By comparing the nucleotide sequences of the identified C. sphaerospermum isolates with the sequences belong to the same fungi and available at NCBI, it was revealed that the identified C. sphaerospermum isolates 2, 6, 9, and 10 have a genetic variation with those previously recorded at the National Center for Biotechnology Information (NCBl); therefore, the identified sequences of C. sphaerospermum isolates have been registered in GenBank database (NCBI) under the accession numbers MN896004, MN896107, MN896963, and MN896971, respectively.


2021 ◽  
Vol 58 (No. 1) ◽  
pp. 31-39
Author(s):  
Mustafa Usta ◽  
Abdullah Güller ◽  
Hikmet Murat Sipahioglu

Phytoplasma-like symptoms of leaf yellowing and calyx malformation were observed in eggplant (Solanum melongena L.), upward leaves and fruit malformation in pepper (Capsicum annuum L.), and aerial tuber formation in potato (S. tuberosum L.) during the survey performed in the late season (August to September) of 2015 and 2016 in Van province (Turkey). A total of 100 samples were tested by nested-PCR using universal primer pairs to assess the sanitary status of the solanaceous crops and to characterise the phytoplasma isolates. Among them, seven samples resulted in a 1.25 kb DNA fragment, and five (two eggplants, two peppers, and one potato) were molecularly characterised (Accession No.: KY579357, KT595210, MF564267, MF564266, and MH683601). BLAST and the virtual restriction fragment length polymorphism (RFLP) analysis of 16S rRNA genes revealed the presence of two distinct phytoplasma infections in solanaceous crops: ‘Candidatus Phytoplasma trifolii’ a member of the clover proliferation group (16SrVI) and subgroup A and ‘Candidatus P. solani’ a member of the stolbur group (16SrXII) and subgroup A. The virtual RFLP analysis and calculated coefficients of RFLP pattern similarities further revealed a remarkable genetic diversity among the ‘Candidatus P. solani’ isolates infecting pepper (similarity coefficient of 0.90) and eggplant (similarity coefficients of 0.98 and 1.00) at the same geographical area. This is the first report of the natural occurrence of ‘Candidadtus P. trifolii’ in potato from the Eastern Anatolia region, Turkey.


2021 ◽  
Author(s):  
Sanni Hintikka ◽  
Jeanette E. L. Carlsson ◽  
Jens Carlsson

Environmental DNA (eDNA) metabarcoding from water samples has, in recent years, shown great promise for biodiversity monitoring. However, universal primers targeting the cytochrome oxidase I (COI) marker gene popular in metazoan studies have displayed high levels of nontarget amplification. To date, enrichment methods bypassing amplification have not been able to match the detection levels of conventional metabarcoding. This study evaluated the use of universal metabarcoding primers as capture probes to either isolate target DNA, or to remove nontarget DNA, prior to amplification by using biotinylated versions of universal metazoan and bacterial barcoding primers, namely metazoan COI and bacterial 16S. Additionally, each step of the protocol was assessed by amplifying both COI and bacterial 16S to investigate the effect on the metazoan and bacterial communities. Bacterial abundance increased in response to the captures (COI library), while the quality of the captured DNA was improved. The metazoan-based probe captured bacterial DNA in a range that was also amplifiable with the 16S primers, demonstrating the ability of universal capture probes to isolate larger fragments of DNA from eDNA. This concept could be applied to metazoan metabarcoding, by using a truly conserved site without a high-level taxonomic resolution as a target of capture, to isolate DNA spanning over a nearby barcoding region, which can then be processed through conventional metabarcoding by amplification protocol.


2021 ◽  
Author(s):  
Masaki Takenaka ◽  
Koki Yano ◽  
Tomoya Suzuki ◽  
Koji Tojo

DNA barcoding is a powerful tool that provides rapid, accurate, and automatable species identification by using standardized genetic region(s). It can be a powerful tool in various fields of biology such as for revealing the existence of cryptic species and/or rare species and in environmental science such as when monitoring river biota. Biodiversity reduction in recent times has become one of the most serious environmental issues on a worldwide scale. DNA barcoding techniques require the development of sets of universal PCR primers for DNA metabarcoding. We tried to develop universal primer sets for the DNA barcoding of all insect groups. In this study, we succeeded in designing not only universal primer sets for DNA barcoding regions of almost all insects, which were designed to include a hypervariable site between highly conserved sites, but also primer sets for longer fragment sequences for registration in a database. We confirmed successful amplification for 14 orders, 43 families, and 68 species with DNA barcoding in the mtDNA 16S rRNA region, and for 13 orders, 42 families, and 66 species with DNA barcoding in the mtDNA 12S rRNA region. A key feature is that the DNA fragments of the DNA barcoding regions amplified by these primer sets are both short at about 200-bp, and longer fragment sequences will increase the level of data registration in the DNA database. Such resulting database enhancements will serve as a powerful tool for increasingly accurate assessment of biodiversity and genetic diversity.


2021 ◽  
Author(s):  
Masayuki K. Sakata ◽  
Mone U. Kawata ◽  
Atsushi Kurabayashi ◽  
Takaki Kurita ◽  
Masatoshi Nakamura ◽  
...  

Biodiversity monitoring is important for the conservation of natural ecosystems in general, but particularly for amphibians, whose populations are pronouncedly declining. However, amphibians ecological traits (e.g., nocturnal or aquatic) often prevent their precise monitoring. Environmental DNA (eDNA) metabarcoding-analysis of extra-organismal DNA released into the environment-allows the easy and effective monitoring of the biodiversity of aquatic organisms. Here, we developed and tested the utility of original PCR primer sets. First, we conducted in vitro PCR amplification tests with universal primer candidates using total DNA extracted from amphibian tissues. Five primer sets successfully amplified the target DNA fragments (partial 16S rRNA gene fragments of 160-311 bp) from all 16 taxa tested (from the three living amphibian orders Anura, Caudata, and Gymnophiona). Next, we investigated the taxonomic resolution retrieved using each primer set. The results revealed that the universal primer set Amph16S had the highest resolution among the tested sets. Finally, we applied Amph16S to actual metabarcoding and evaluated its detection capability by comparing the species detected using eDNA and physical survey (capture-based sampling and visual survey) in multiple agricultural ecosystems across Japan (160 sites in 10 areas). The eDNA metabarcoding with Amph16S detected twice as many species as the physical surveys (16 vs. 8 species, respectively), indicating the effectiveness of Amph16S in biodiversity monitoring and ecological research for amphibian communities.


2021 ◽  
Vol 22 (11) ◽  
Author(s):  
Febriyanti Vera ◽  
WORAWIDH WAJJWALKU ◽  
PRAMANA YUDA ◽  
BUDI SETIADI DARYONO

Abstract. Vera F, Wajjwalku W, Yuda P, Daryono BS. 2021. Short Communication: A new primer set in CHD1 gene for bird sex identification. Biodiversitas 22: 4977-4982. Determine sex is difficult for many bird species that are sexually monomorphic or only dimorphic in the adult stage. Many molecular markers have been developed for DNA sexing, which were mostly based on identifying Z and W chromosomes of avians. The sex determination of birds was mostly applied universal primer set such as P2/P8 or 2550F/2718R. However, those universal primers that were designed sometimes could not good result consistency in non-ratite birds or ratite birds. Therefore, we improved a specific primer design with deletion site in W chromosome to amplify the female-specific segments on Chromodomain-helicase DNA binding protein-1 (CHD1) gene from alignment sequences CHD1-Z and CHD1-W of Macrocephalon maleo S. Müller, 1846. This study aims to design a new pair of primer targeting a section of the CHD1 gene that can be amplified in non-ratite birds, the name of a new primer is In-Sex F/In-Sex R. A new primer set amplified DNA fragments in around 650 or 550 base pairs of CHD1-Z and also, 350 base pairs of CHD1-W. The result has successfully amplified the sex of multiple species on orders Galliformes, Passeriformes, Accipitriformes, and Strigiformes. This analysis can be helpful to the effort of in-situ or ex-situ management and conservation programs e.g the mating system in birds. And also, the analysis can be helpful for sexing data in the case of captive birds before releasing in natural habitat or reintroduction programs.


2021 ◽  
Vol 12 ◽  
Author(s):  
Changwoo Park ◽  
Seung Bum Kim ◽  
Sang Ho Choi ◽  
Seil Kim

Microbial community analysis based on the 16S rRNA-gene is used to investigate both beneficial and harmful microorganisms in various fields and environments. Recently, the next-generation sequencing (NGS) technology has enabled rapid and accurate microbial community analysis. Despite these advantages of NGS based metagenomics study, sample transport, storage conditions, amplification, library preparation kits, sequencing, and bioinformatics procedures can bias microbial community analysis results. In this study, eight mock communities were pooled from genomic DNA of Lactobacillus acidophilus KCTC 3164T, Limosilactobacillus fermentum KCTC 3112T, Lactobacillus gasseri KCTC 3163T, Lacticaseibacillus paracasei subsp. paracasei KCTC 3510T, Limosilactobacillus reuteri KCTC 3594T, Lactococcus lactis subsp. lactis KCTC 3769T, Bifidobacterium animalis subsp. lactis KCTC 5854T, and Bifidobacterium breve KCTC 3220T. The genomic DNAs were quantified by droplet digital PCR (ddPCR) and were mixed as mock communities. The mock communities were amplified with various 16S rRNA gene universal primer pairs and sequenced by MiSeq, IonTorrent, MGIseq-2000, Sequel II, and MinION NGS platforms. In a comparison of primer-dependent bias, the microbial profiles of V1-V2 and V3 regions were similar to the original ratio of the mock communities, while the microbial profiles of the V1-V3 region were relatively biased. In a comparison of platform-dependent bias, the sequence read from short-read platforms (MiSeq, IonTorrent, and MGIseq-2000) showed lower bias than that of long-read platforms (Sequel II and MinION). Meanwhile, the sequences read from Sequel II and MinION platforms were relatively biased in some mock communities. In the data of all NGS platforms and regions, L. acidophilus was greatly underrepresented while Lactococcus lactis subsp. lactis was generally overrepresented. In all samples of this study, the bias index (BI) was calculated and PCA was performed for comparison. The samples with biased relative abundance showed high BI values and were separated in the PCA results. In particular, analysis of regions rich in AT and GC poses problems for genome assembly, which can lead to sequencing bias. According to this comparative analysis, the development of reference material (RM) material has been proposed to calibrate the bias in microbiome analysis.


Antibiotics ◽  
2021 ◽  
Vol 10 (10) ◽  
pp. 1239
Author(s):  
Yu-Chia Hsieh ◽  
Jia-Wen Wu ◽  
Yi-Yin Chen ◽  
Tran Lam Tu Quyen ◽  
Wei-Chao Liao ◽  
...  

Dissemination of multidrug-resistant, particularly tigecycline-resistant, Acinetobacter baumannii is of critical importance, as tigecycline is considered a last-line antibiotic. Acquisition of tet(X), a tigecycline-inactivating enzyme mostly found in strains of animal origin, imparts tigecycline resistance to A. baumannii. Herein, we investigated the presence of tet(X) variants among 228 tigecycline-non-susceptible A. baumannii isolates from patients at a Taiwanese hospital via polymerase chain reaction using a newly designed universal primer pair. Seven strains (3%) carrying tet(X)-like genes were subjected to whole genome sequencing, revealing high DNA identity. Phylogenetic analysis based on the PFGE profile clustered the seven strains in a clade, which were thus considered outbreak strains. These strains, which were found to co-harbor the chromosome-encoded tet(X6) and the plasmid-encoded blaOXA-72 genes, showed a distinct genotype with an uncommon sequence type (Oxford ST793/Pasteur ST723) and a new capsular type (KL129). In conclusion, we identified an outbreak clone co-carrying tet(X6) and blaOXA-72 among a group of clinical A. baumannii isolates in Taiwan. To the best of our knowledge, this is the first description of tet(X6) in humans and the first report of a tet(X)-like gene in Taiwan. These findings identify the risk for the spread of tet(X6)-carrying tigecycline- and carbapenem-resistant A. baumannii in human healthcare settings.


2021 ◽  
Vol 18 (1) ◽  
Author(s):  
Tomo Daidoji ◽  
Ronald Enrique Morales Vargas ◽  
Katsuro Hagiwara ◽  
Yasuha Arai ◽  
Yohei Watanabe ◽  
...  

Abstract Background Flaviviruses are representative arboviruses carried by arthropods and/or vertebrates; these viruses can pose a public health concern in many countries. By contrast, it is known that a novel virus group called insect-specific flaviviruses (ISFs) also infects arthropods, although no such virus has yet been isolated from vertebrates. The characteristics of ISFs, which affect replication of human-pathogenic flaviviruses within co-infected mosquito cells or mosquitoes without affecting the mosquitoes themselves, mean that we should pay attention to both ISFs and human-pathogenic flaviviruses, despite the fact that ISFs appear not to be directly hazardous to human health. To assess the risk of diseases caused by flaviviruses, and to better understand their ecology, it is necessary to know the extent to which flaviviruses are harbored by arthropods. Methods We developed a novel universal primer for use in a PCR-based system to detect a broad range of flaviviruses. We then evaluated its performance. The utility of the novel primer pair was evaluated in a PCR assay using artificially synthesized oligonucleotides derived from a template viral genome sequence. The utility of the primer pair was also examined by reverse transcription PCR (RT-PCR) using cDNA templates prepared from virus-infected cells or crude supernatants prepared from virus-containing mosquito homogenates. Results The novel primer pair amplified the flavivirus NS5 sequence (artificially synthesized) in all samples tested (six species of flavivirus that can cause infectious diseases in humans, and flaviviruses harbored by insects). In addition, the novel primer pair detected viral genomes in cDNA templates prepared from mosquito cells infected with live flavivirus under different infectious conditions. Finally, the viral genome was detected with high sensitivity in crude supernatants prepared from pooled mosquito homogenates. Conclusion This PCR system based on a novel primer pair makes it possible to detect arthropod-borne flaviviruses worldwide (the primer pair even detected viruses belonging to different genetic subgroups). As such, an assay based on this primer pair may help to improve public health and safety, as well as increase our understanding of flavivirus ecology.


Sign in / Sign up

Export Citation Format

Share Document