holomorphic dynamics
Recently Published Documents


TOTAL DOCUMENTS

59
(FIVE YEARS 10)

H-INDEX

6
(FIVE YEARS 1)

2021 ◽  
pp. 1-40
Author(s):  
LETICIA PARDO-SIMÓN

Abstract Many authors have studied the dynamics of hyperbolic transcendental entire functions; these are functions for which the postsingular set is a compact subset of the Fatou set. Equivalently, they are characterized as being expanding. Mihaljević-Brandt studied a more general class of maps for which finitely many of their postsingular points can be in their Julia set, and showed that these maps are also expanding with respect to a certain orbifold metric. In this paper we generalize these ideas further, and consider a class of maps for which the postsingular set is not even bounded. We are able to prove that these maps are also expanding with respect to a suitable orbifold metric, and use this expansion to draw conclusions on the topology and dynamics of the maps. In particular, we generalize existing results for hyperbolic functions, giving criteria for the boundedness of Fatou components and local connectivity of Julia sets. As part of this study, we develop some novel results on hyperbolic orbifold metrics. These are of independent interest, and may have future applications in holomorphic dynamics.


Entropy ◽  
2021 ◽  
Vol 23 (2) ◽  
pp. 237
Author(s):  
Rostislav Grigorchuk ◽  
Supun Samarakoon

Fractal groups (also called self-similar groups) is the class of groups discovered by the first author in the 1980s with the purpose of solving some famous problems in mathematics, including the question of raising to von Neumann about non-elementary amenability (in the association with studies around the Banach-Tarski Paradox) and John Milnor’s question on the existence of groups of intermediate growth between polynomial and exponential. Fractal groups arise in various fields of mathematics, including the theory of random walks, holomorphic dynamics, automata theory, operator algebras, etc. They have relations to the theory of chaos, quasi-crystals, fractals, and random Schrödinger operators. One important development is the relation of fractal groups to multi-dimensional dynamics, the theory of joint spectrum of pencil of operators, and the spectral theory of Laplace operator on graphs. This paper gives a quick access to these topics, provides calculation and analysis of multi-dimensional rational maps arising via the Schur complement in some important examples, including the first group of intermediate growth and its overgroup, contains a discussion of the dichotomy “integrable-chaotic” in the considered model, and suggests a possible probabilistic approach to studying the discussed problems.


2020 ◽  
Vol 37 (1-2) ◽  
pp. 86-95
Author(s):  
Bishnu Hari Subedi ◽  
Ajaya Singh

In this paper, we prove that the escaping set of a transcendental semi group is S-forward invari-ant. We also prove that if a holomorphic semi group is a belian, then the Fatou, Julia, and escaping sets are S-completely invariant. We also investigate certain cases and conditions that the holomorphic semi group dynamics exhibits the similar dynamical behavior just like a classical holomorphic dynamics. Frequently, we also examine certain amount of connections and contrasts between classical holomorphic dynamics and holomorphic semi group dynamics.


Author(s):  
Hiroyuki Inou ◽  
Sabyasachi Mukherjee

Abstract In [21], Milnor found Tricorn-like sets in the parameter space of real cubic polynomials. We give a rigorous definition of these Tricorn-like sets as suitable renormalization loci and show that the dynamically natural straightening map from such a Tricorn-like set to the original Tricorn is discontinuous. We also prove some rigidity theorems for polynomial parabolic germs, which state that one can recover unicritical holomorphic and anti-holomorphic polynomials from their parabolic germs.


2020 ◽  
Vol 1 ◽  
pp. 43-50
Author(s):  
Bishnu Hari Subedi ◽  
Ajaya Singh

The subject of this paper is the well-known 3n + 1 problem of elementary number theory. This problem concerns with the behaviour of the iteration of a function which takes odd integers n to 3n + 1, and even integers n to n/2. There is a famous Collatz conjecture associated to this problem which asserts that, starting from any positive integer n, repeated iteration of the function eventually produces the value. We briefly discuss some basic facts and results of 3n + 1 problem and Collatz conjecture. Basically, we more concentrate on the generalization of this problem and conjecture to holomorphic dynamics.


2020 ◽  
pp. 1-39
Author(s):  
CARLOS CABRERA ◽  
PETER MAKIENKO

We discuss the relation between the existence of fixed points of the Ruelle operator acting on different Banach spaces, and Sullivan’s conjecture in holomorphic dynamics.


Sign in / Sign up

Export Citation Format

Share Document