olfactory ensheathing cell
Recently Published Documents


TOTAL DOCUMENTS

142
(FIVE YEARS 50)

H-INDEX

24
(FIVE YEARS 4)

2021 ◽  
Vol 15 ◽  
Author(s):  
Mahjabeen Miah ◽  
Patrizia Ferretti ◽  
David Choi

Olfactory ensheathing cells (OECs) are specialized glia cells of the olfactory system that support the continual regeneration of olfactory neurons throughout adulthood. Owing to their pro-regenerative properties, OECs have been transplanted in animal models of spinal cord injuries (SCI) and trialed in clinical studies on SCI patients. Although these studies have provided convincing evidence to support the continued development of OEC transplantation as a treatment option for the repair of SCI, discrepancies in the reported outcome has shown that OEC transplantation requires further improvement. Much of the variability in the reparative potential of OEC transplants is due to the variations in the cell composition of transplants between studies. As a result, the optimal cell preparation is currently a subject of debate. Here we review, the characterization as well as the effect of the cell composition of olfactory cell transplantation on therapeutic outcome in SCI. Firstly, we summarize and review the cell composition of olfactory cell preparations across the different species studied prior to transplantation. Since the purity of cells in olfactory transplants might affect the study outcome we also examine the effect of the proportions of OECs and the different cell types identified in the transplant on neuroregeneration. Finally, we consider the effect of the yield of cells on neuroregeneration by assessing the cell dose of transplants on therapeutic outcome.


2021 ◽  
Vol 0 (0) ◽  
pp. 0-0
Author(s):  
B.-Y. Kim ◽  
J.Y. Park ◽  
K.J. Cho ◽  
J.H. Bae

Background: Urban particulate matter (UPM) in ambient air is implicated in a variety of human health issues worldwide, however, few studies exist on the effect of UPM on the olfactory system. This study aimed to identify the factors affecting the destruction of the olfactory system in a mouse model following UPM exposure. Methods: Mice were divided into: control and four UPM-exposed groups (200 µg UPM at 1 and 2 weeks, and 400 µg UPM at 1 and 2 weeks [standard reference material 1649b; average particle diameter 10.5 μm]). The olfactory neuroepithelium was harvested for histologic examination, gene ontology, quantitative real-time polymerase chain reaction, and western blotting. Results: Compared to the control group, olfactory marker protein, Olfr1507, ADCY3, and GNAL mRNA levels were lower, and S-100, CNPase, NGFRAP1, BDNF, and TACR3 mRNA levels were higher in the olfactory neuroepithelium of the UPM groups. Moderately positive correlation was present between the 1- and 2-week groups. After analyzing the 200 and 400 UPM groups separately, the strength of the association between the 200 UPM 1- and 2-week groups was moderately positive. No differences was present in the neuroepithelial inflammatory marker levels between the UPM and control groups. Conclusions: UPM could have cytotoxic effects on the olfactory epithelium. The exposure time and particular concentration of UPM exposure could affect the degree of destruction of the olfactory neuroepithelium. The olfactory regeneration mechanism could be related to the neurotrophic factors, olfactory ensheathing cell stimulation, and trigeminal nerve support.


2021 ◽  
Vol 18 ◽  
Author(s):  
Yuan-Kun Tu ◽  
Yu-Huan Hsueh ◽  
Hsien-Chang Huang

Background: Extracellular vesicle (EV)-based therapy has been identified as a leading alternative approach in several disease models. EV derived from the olfactory ensheathing cell (OEC) has been documented for its strong neuro-regenerative capacity. However, no information on its cargo that may contribute to its therapeutic effect has been available. Objective: To report the first miRNA profile of human OEC (hOEC) -EV, and investigate the neuroprotective effects. Methods: hOEC-EV was isolated and sequenced. We established in vitro experiments to assess the therapeutic potential of hOEC-EVs with respect to insulted neural progenitor cells (NPCs), and the angiogenesis effect. Secondary post-injury insults were imitated using t-BHP-mediated oxidative stress. Results: We noted a strong abundance of hOEC-EV-miRNAs, including hsa-miR148a-3p, has-miR151a-3p and several members of let-7 family. The common targets of 15 miRNAs among the top 20 miRNAs were thrombospondin 1 and cyclin dependent kinase 6. We demonstrated that hOEC-EVs promote normal NPC proliferation and differentiation to neuron-like morphologies with prolonged axons. hOEC-EVs protect cells from t-BHP mediated apoptosis. We also found that the migration rate of either NPCs or endothelial cells significantly improved with hOEC-EVs. Furthermore, in vitro tube formation assays indicated that angiogenesis, an important process for tissue repair, was significantly enhanced in human umbilical vein endothelial cells exposed to hOEC-EVs. Conclusion: Our results revealed that hOEC-EVs exert neuroprotective effects by protecting cells from apoptosis and promoting in vitro biological processes that are important to neural tissue repair, including neural cell proliferation, axonal growth, and cell migration, in addition to enhancing angiogenesis.


2021 ◽  
Vol 141 ◽  
pp. 111819
Author(s):  
Yu-Ting Tseng ◽  
Mo Chen ◽  
Richard Lai ◽  
Francesca Oieni ◽  
Graham Smyth ◽  
...  

2021 ◽  
Author(s):  
Homa Zamani ◽  
Mina Soufizomorrod ◽  
Saeed Oraee-Yazdani ◽  
Dariush Naviafar ◽  
Mohammadhosein Akhlaghpasand ◽  
...  

Abstract Cell-based therapies are considered as promising strategies for spinal cord regeneration. However, a combinatorial cell therapeutic approach seems more beneficial as it can target various aspects of the injury. Here, we assessed the safety and feasibility of autologous mucosal Olfactory Ensheathing Cell (OEC) and bone marrow Mesenchymal Stem Cell (MSC) co-transplantation in patients with chronic, complete (American Spinal Injury Association (ASIA) classification A) Spinal Cord Injury (SCI). Three patients with the traumatic SCI of the thoracic level were enrolled. They received autologous OEC and MSC combination through the lumbar puncture. All adverse events and possible functional outcomes were documented performing pre- and post-operative general clinical examination, Magnetic Resonance Imaging (MRI), neurological assessment based on the International Standard of Neurological Classification for SCI (ISNCSCI), and functional evaluation using Spinal Cord Independence Measure version III (SCIM III). No serious safety issue was recorded during the two years of follow-up. MRI findings remained unchanged with no neoplastic tissue formation. ASIA impairment scale improved from A to B in one of the participants. SCIM III evaluation also showed some degrees of progress in this patient's quality of life. The two other patients had negligible or no improvement in their sensory scores without any changes in the ASIA impairment scale and SCIM III scores. No motor recovery was observed in any of the participants. Overall, this two-year trial was not associated with any adverse findings, which may suggest the safety of autologous OEC and bone marrow MSC combination for the treatment of human SCI.This study was registered at the Iranian Registry of Clinical Trials (IRCT registration number: IRCT20160110025930N2/ registration date: 2018-09-29).


Author(s):  
Oscar Castaño ◽  
Ana López-Mengual ◽  
Diego Reginensi ◽  
Andreu Matamoros-Angles ◽  
Elisabeth Engel ◽  
...  

(Following spinal cord injury, olfactory ensheathing cell (OEC) transplantation is a promising therapeutic approach in promoting functional improvement. Some studies report that the migratory properties of OECs are compromised by inhibitory molecules and potentiated by chemical concentration differences. Here we compare the attachment, morphology, and directionality of an OEC-derived cell line, TEG3 cells, seeded on functionalized nanoscale meshes of Poly(l/dl-lactic acid; PLA) nanofibers. The size of the nanofibers has a strong effect on TEG3 cell adhesion and migration, with the PLA nanofibers having a 950 nm diameter being the ones that show the best results. TEG3 cells are capable of adopting a bipolar morphology on 950 nm fiber surfaces, as well as a highly dynamic behavior in migratory terms. Finally, we observe that functionalized nanofibers, with a chemical concentration increment of SDF-1α/CXCL12, strongly enhance the migratory characteristics of TEG3 cells over inhibitory substrates.


Sign in / Sign up

Export Citation Format

Share Document