tumor cell adhesion
Recently Published Documents


TOTAL DOCUMENTS

202
(FIVE YEARS 29)

H-INDEX

41
(FIVE YEARS 3)

2021 ◽  
Vol 12 ◽  
Author(s):  
Garcia-Lazaro Rocio Soledad ◽  
Caligiuri Lorena Gisel ◽  
Lorenzo Norailys ◽  
Lamdan Humberto ◽  
Alonso Daniel Fernando ◽  
...  

Breast cancer (BC) is the most frequent cancer in women and tumor metastasis is a major cause of cancer-related deaths. Our aim was to evaluate anti-metastatic properties of yerba mate extract (YMe) in BC models. 4T1, F3II, MCF-7, and MDA-MB231 cell lines were used to perform in vitro assays. The F3II syngeneic mammary carcinoma model in BALB/c mice was used to evaluate tumor progression, BC metastasis and survival. Cells were inoculated subcutaneously into the flank for the heterotopic model and into the mammary fat pad for the orthotopic model. YMe was administered p.o. in a dose of 1.6 g/kg/day. In vitro YMe inhibited cell proliferation and reduced tumor cell adhesion, migration and invasion. These biological effects were cell-line dependent. In vivo YMe reduced tumor metastasis and increased mice survival in both models. Our preclinical results suggest that YMe could modulate tumor progression and metastasis in BC models.


2021 ◽  
Vol 11 ◽  
Author(s):  
Liuting Yu ◽  
Yao Guo ◽  
Zhiguang Chang ◽  
Dengyang Zhang ◽  
Shiqiang Zhang ◽  
...  

Platelets are essential components in the tumor microenvironment. For decades, clinical data have demonstrated that cancer patients have a high risk of thrombosis that is associated with adverse prognosis and decreased survival, indicating the involvement of platelets in cancer progression. Increasing evidence confirms that cancer cells are able to induce production and activation of platelets. Once activated, platelets serve as allies of cancer cells in tumor growth and metastasis. They can protect circulating tumor cells (CTCs) against the immune system and detachment-induced apoptosis while facilitating angiogenesis and tumor cell adhesion and invasion. Therefore, antiplatelet agents and platelet-based therapies should be developed for cancer treatment. Here, we discuss the mechanisms underlying the bidirectional cancer-platelet crosstalk and platelet-based therapeutic approaches.


2021 ◽  
Vol 22 (11) ◽  
pp. 6049
Author(s):  
Thomas Brock ◽  
Elisabeth Boudriot ◽  
Anke Klawitter ◽  
Marianne Großer ◽  
Trang T. P. Nguyen ◽  
...  

During metastasis, cancer cells that originate from the primary tumor circulate in the bloodstream, extravasate, and form micrometastases at distant locations. Several lines of evidence suggest that specific interactions between cancer cells and endothelial cells, in particular tumor cell adhesion to the endothelium and transendothelial migration, play a crucial role in extravasation. Here we have studied the role of vascular endothelial (VE)-cadherin which is expressed aberrantly by breast cancer cells and might promote such interactions. By comparing different human breast cancer cell lines, we observed that the number of cancer cells that adhered to endothelium correlated with VE-cadherin expression levels. VE-cadherin silencing experiments confirmed that VE-cadherin enhances cancer cell adhesion to endothelial cells. However, in contrast, the number of cancer cells that incorporated into the endothelium was not dependent on VE‑cadherin. Thus, it appears that cancer cell adhesion and incorporation are distinct processes that are governed by different molecular mechanisms. When cancer cells incorporated into the endothelial monolayer, they formed VE-cadherin positive contacts with endothelial cells. On the other hand, we also observed tumor cells that had displaced endothelial cells, reflecting either different modes of incorporation, or a temporal sequence where cancer cells first form contact with endothelial cells and then displace them to facilitate transmigration. Taken together, these results show that VE-cadherin promotes the adhesion of breast cancer cells to the endothelium and is involved in the initial phase of incorporation, but not their transmigration. Thus, VE-cadherin might be of relevance for therapeutic strategies aiming at preventing the metastatic spread of breast cancer cells.


Author(s):  
Li Wang ◽  
Yang Wang ◽  
Zhiyan Liu ◽  
Yixia Zhou ◽  
Jun Zhang ◽  
...  

IntroductionTo find out the correlations between the effects of down-regulating AnnexinA7 and CAP1 gene on cell adhesion factors and the biological behavior of Hca-p cells cells, and finally infer the relationship between the two genes.Material and methodsWestern blot ,qRT-PCR,immunocytochemistry, CCK8 cell proliferation, flow cytometry, lymph node adhesion and transwell chamber assay testing .ResultsAnnexinA7 and CAP1 were consistent with the regulation of the expression of the adhesion molecules such as FAK, Src, Paxillin and E-cadherin. At the mRNA and protein levels, the expression of FAK, Src and Paxillin were increased with down-regulated AnnexinA7 and CAP1 genes, while E-cadherin was down-regulated in the change of these two genes. And the low expression of AnnexinA7 could affect the expression of CAP1 in mRNA and protein levels. otherwise, the localization of AnnexinA7 and CAP1 in hepatocellular carcinoma cells was also the same. After down-regulating the expression of CAP1, the functions of proliferation, lymph node adhesion and invasion were increased and early apoptotic ability was decreased in Hca-P cells.ConclusionsAnnexinA7 and CAP1 could control the expression of these adhesion molecules in the same trend. We speculated they may be co-localization. And AnnexinA7 gene may be related to the molecular mechanism of CAP1 gene, which is likely to have a consistent effect on cell adhesion molecules and be closely related to the biological behaviors of Hca-P cells.AnnexinA7 and CAP1 may play an inhibitory role in lymph node metastasis to provide a reliable basis for the early identification of lymphatic metastasis in hepatocellular carcinoma.


2021 ◽  
Vol 11 ◽  
Author(s):  
Xiao Han ◽  
Yaning Zhu ◽  
Li Shen ◽  
Yu Zhou ◽  
Liqun Pang ◽  
...  

Esophageal squamous cell carcinoma (ESCC) is a highly aggressive malignancy and treatment failure is largely due to metastasis and invasion. Aberrant tumor cell adhesion is often associated with tumor progression and metastasis. However, the exact details of cell adhesion in ESCC progression have yet to be determined. In our study, the clinical relevance of Pax2 transactivation domain-interacting protein (PTIP/PAXIP1) was analyzed by immunohistochemistry of ESCC tissues. We found that low expression of PTIP was associated with lymph node metastasis in ESCC, and loss-of-function approaches showed that depletion of PTIP promoted ESCC cell migration and invasion both in vitro and in vivo. Analysis integrating RNA-seq and ChIP-seq data revealed that PTIP directly regulated ephrin type-A receptor 2 (EphA2) expression in ESCC cells. Moreover, PTIP inhibited EphA2 expression by competing with Fosl2, which attenuated the invasion ability of ESCC cells. These results collectively suggest that PTIP regulates ESCC invasion through modulation of EphA2 expression and hence presents a potential therapeutic target for its treatment.


Author(s):  
Yan Pan ◽  
Marhaba Abdureyim ◽  
Qing Yao ◽  
Xuejun Li

Tumor cell adhesion to the endothelium is one pattern of tumor–endothelium interaction and a key step during tumor metastasis. Endothelium integrity is an important barrier to prevent tumor invasion and metastasis. Changes in endothelial cells (ECs) due to tumor cell adhesion provide important signaling mechanisms for the angiogenesis and metastasis of tumor cells. However, the changes happened in endothelial cells when tumor–endothelium interactions are still unclear. In this study, we used Affymetrix Gene Chip Human Transcriptome Array 2.0. and quantitative real-time PCR (qPCR) to clarify the detailed gene alteration in endothelial cells adhered by prostate tumor cells PC-3M. A total of 504 differentially expressed mRNAs and 444 lncRNAs were obtained through chip data analysis. Gene Ontology (GO) function analysis showed that differentially expressed genes (DEGs) mainly mediated gland development and DNA replication at the biological level; at the cell component level, they were mainly involved in the mitochondrial inner membrane; and at the molecular function level, DEGs were mainly enriched in ATPase activity and catalytic activity. Kyoto Encyclopedia of Genes and Genomes (KEGG) signal pathway analysis showed that the DEGs mainly regulated pathways in cancer, cell cycle, pyrimidine metabolism, and the mTOR signaling pathway. Then, we constructed a protein–protein interaction functional network and mRNA–lncRNA interaction network using Cytoscape v3.7.2. to identify core genes, mRNAs, and lncRNAs. The miRNAs targeted by the core mRNA PRKAA2 were predicted using databases (miRDB, RNA22, and Targetscan). The qPCR results showed that miR-124-3p, the predicted target miRNA of PRKAA2, was significantly downregulated in endothelial cells adhered by PC-3M. With a dual luciferase reporter assay, the binding of miR-124-3p with PRKAA2 3’UTR was confirmed. Additionally, by using the knockdown lentiviral vectors of miR-124-3p to downregulate the miR-124-3p expression level in endothelial cells, we found that the expression level of PRKAA2 increased accordingly. Taken together, the adhesion of tumor cells had a significant effect on mRNAs and lncRNAs in the endothelial cells, in which PRKAA2 is a notable changed molecule and miR-124-3p could regulate its expression and function in endothelial cells.


Molecules ◽  
2021 ◽  
Vol 26 (2) ◽  
pp. 397
Author(s):  
Gradimir Misevic ◽  
Emanuela Garbarino

Glycan-to-glycan binding was shown by biochemical and biophysical measurements to mediate xenogeneic self-recognition and adhesion in sponges, stage-specific cell compaction in mice embryos, and in vitro tumor cell adhesion in mammals. This intermolecular recognition process is accepted as the new paradigm accompanying high-affinity and low valent protein-to-protein and protein-to-glycan binding in cellular interactions. Glycan structures in sponges have novel species-specific sequences. Their common features are the large size >100 kD, polyvalency >100 repeats of the specific self-binding oligosaccharide, the presence of fucose, and sulfated and/or pyruvylated hexoses. These structural and functional properties, different from glycosaminoglycans, inspired their classification under the glyconectin name. The molecular mechanism underlying homophilic glyconectin-to-glyconectin binding relies on highly polyvalent, strong, and structure-specific interactions of small oligosaccharide motifs, possessing ultra-weak self-binding strength and affinity. Glyconectin localization at the glycocalyx outermost cell surface layer suggests their role in the initial recognition and adhesion event during the complex and multistep process. In mammals, Lex-to-Lex homophilic binding is structure-specific and has ultra-weak affinity. Cell adhesion is achieved through highly polyvalent interactions, enabled by clustering of small low valent structure in plasma membranes.


Biomedicines ◽  
2021 ◽  
Vol 9 (1) ◽  
pp. 35
Author(s):  
Masanobu Tsubaki ◽  
Shuuji Genno ◽  
Tomoya Takeda ◽  
Takuya Matsuda ◽  
Naoto Kimura ◽  
...  

The high mortality rate of cancer is strongly correlated with the development of distant metastases at secondary sites. Although Rho GTPases, such as RhoA, RhoB, RhoC, and RhoE, promote tumor metastasis, the main roles of Rho GTPases remain unidentified. It is also unclear whether rhosin, a Rho inhibitor, acts by suppressing metastasis by a downstream inhibition of Rho. In this study, we investigated this mechanism of metastasis in highly metastatic melanoma and breast cancer cells, and the mechanism of inhibition of metastasis by rhosin. We found that rhosin suppressed the RhoA and RhoC activation, the nuclear localization of YAP, but did not affect ERK1/2, Akt, or NF-κB activation in the highly metastatic cell lines B16BL6 and 4T1. High expression of YAP was associated with poor overall and recurrence-free survival in patients with breast cancer or melanoma. Treatment with rhosin inhibited lung metastasis in vivo. Moreover, rhosin inhibited tumor cell adhesion to the extracellular matrix via suppression of RHAMM expression, and inhibited SDF-1-induced cell migration and invasion by decreasing CXCR4 expression in B16BL6 and 4T1 cells. These results suggest that the inhibition of RhoA/C-YAP pathway by rhosin could be an extremely useful therapeutic approach in patients with melanoma and breast cancer.


Sign in / Sign up

Export Citation Format

Share Document