water drainage
Recently Published Documents


TOTAL DOCUMENTS

553
(FIVE YEARS 179)

H-INDEX

22
(FIVE YEARS 5)

2022 ◽  
Vol 961 (1) ◽  
pp. 012064
Author(s):  
Bayda A Dhaidan ◽  
Imzahim A Alwan ◽  
Mahmoud S Al-Khafaji

Abstract Water pollution is now a major threat to the existence of living beings. Accordingly, Water quality monitoring is an important activity toward restoring water quality. As wetland eutrophication is one of the essential ecosystem elements, devastation of this element is a significant issue. The Trophic State Index (TSI) provides information about trophic condition of water bodies. This paper aims to conduct spatiotemporal monitoring for the eutrophication of the west part of Al-Hammar Marsh for the period 2013-2020. To this end, a satellite-based TSI computation model was developed and implemented by using a series of OLI Landsat satellite images. The results showed that there was no improvement in the eutrophication state in the marsh, the percentage of the low class of TSI decreased in 2015 and 2018 to 7.9% and 2.6% and increased in 2017 and 2020 to 39.8%, and 56.3%. In general, the TSI was in the poor class in all the considered periods. Fluctuation of quantity and quality of the inflow prevents restoring the eutrophication of the marsh because this process requires stability in the levels of inundation above the critical limits for the water depth and periods. Therefore, it is necessary to find suitable alternatives to provide water drainage in quantities and quality that ensure the sustainability of the marsh ecosystem.


2021 ◽  
Vol 66 (3) ◽  
pp. 47-62
Author(s):  
Agnieszka Sosnowska ◽  
Tomasz Grabowski ◽  
Andrzej Harasimiuk

The Łowicz-Błonie Plain is a flat and monotonous part of the late-glacial landscape. The parent material is dominated by loam, silt and clay covered with sand of various thickness. The main aim of the study was to indicate the natural and anthropogenic determinants of the fertile plain landscape’s functions, which has been intensively used for agriculture. Natural environmental conditions are determined by the vicinity of contrasting in humidity and trophism areas. The current state of the natural environment is the result of both the natural basis and anthropogenic transformations. The biggest changes in expanding the possibilities of using the trophic potential are related to artificial water drainage system.


2021 ◽  
Vol 16 (4) ◽  
pp. 176-191
Author(s):  
Yanfen Geng ◽  
Huanyun Zhou ◽  
Xiaojing Gong ◽  
Yaolu Ma ◽  
Xianhua Chen

Runoff depth distribution on the concave and circular curve sections is obtained from a two-dimensional numerical simulating model in order to analyze the temporal and spatial variation of the pavement runoff on the curve section. The two-dimensional model verified by the field data can depict the alignment of pavement more accurately as compared to the empirical equation and a one-dimensional model. The runoff on the concave section and circular curve section is compared for the free water drainage and centerline drainage. Results show that a two-dimensional model is essential for the analysis of the centerline drainage. The runoff depth can be controlled by a reasonable curb height and location interval. The drainage type affects the variation of the runoff depth on the nearside lane, and the maximum water depth can be up to more than 80 mm on the concave section and nearly 60 mm on the circular curve section under centerline drainage. Besides the existing hydroplaning results, the runoff depth difference of the wheel trace should be considered to evaluate driving safety. Sideslip will occur when the depth difference becomes more than 6 mm under condition that the runoff depth is less than the tread depth (7 mm). When the runoff depth is more than the tread depth, sideslip will occur once the depth difference exceeds 4 mm.


Pomorstvo ◽  
2021 ◽  
Vol 35 (2) ◽  
pp. 297-307
Author(s):  
Josip Dujmović ◽  
Dean Bernečić

A common way of measuring heavy fuel oil consumption on board a vessel is to use volumetric fuel flow meters installed at fuel systems inlets for each of the major fuel consumers. At each stage of the fuel processing cycle, certain mass fuel losses or deviations and calculation errors occur that are not counted accurately into fuel consumption figures. The goal of this paper is to identify those fuel mass losses and measuring/calculating errors and perform their quantitative numerical analysis based on actual data. Fuel mass losses defined as deviations identified during the fuel preparation process are evaporation of volatile organic compounds, water drainage, fuel separation, and leakages while errors identified are flow meter accuracy and volumetric/mass flow conversion accuracy. By utilizing statistical analysis of obtained data from engine logbook extracts from three different ships numerical models were generated for each fuel mass loss point. Measuring errors and volumetric/mass conversion errors are numerically analyzed based on actual equipment and models used onboard example vessels. By computational analysis of the obtained models, approximate percentage losses and errors are presented as a fraction of fuel quantity on board or as a fraction of fuel consumed. Those losses and errors present between 0,001% and 5% of fuel stock or fuel consumption figures for each identified loss/error point. This paper presents a contribution for more accurate heavy fuel oil consumption calculation and consequently accurate declaration of remaining fuel stock onboard. It also presents a base for possible further research on the possible influence of fuel grade, fuel water content on the accuracy of consumption calculation.


Author(s):  
Itolima Ologhadien

The application of Gumbel (EVI) to the development of rainfall intensity– duration – frequency (IDF) curves has often been criticized on theoretical and empirical grounds as it may underestimate the largest extreme rainfall amounts. The consequences of underestimation are economic losses, property damages, and loss of life. Therefore, it is important that water resources engineering infrastructure be accurately design to avoid these consequences. This paper evaluates the performances of four probability distributions; GEV, EV1, LP3 and P3 using the annual maxima precipitation series of 26 years for Warri Metropolis obtained from Nigerian Meteorological Agency (NiMet). The strength and weakness of the four probability distributions were examined with the goodness of fit (GOF) module of Easyfit software which implemented Kolmogorov - Smirnov (KS) and Anderson - Darling (AD) tests at 5% significance level. The Easyfit software fitted the precipitation series data to the four probability distributions and ranked the four probability distributions across the fifteen rainfall durations. Results show that for both KS and AD tests, GEV distribution was found to be best-fit distribution and it was applied to the development of IDF curves in Warri Metropolis, Nigeria. Furthermore, the IDF values obtained were applied in the development of three-parameter IDF models for return periods of 10 - , 15 -, 20 -, 25 - , 50 -, and 100-years. The mean absolute error, Nash – Sutcliffe Efficiency (NSE) and Root Mean Square Error (RMSE) indices computed for the IDF models increase with increasing return periods. The IDF curves and models depicted the general attributes of IDF curves and models. This study could be of significant academic value and improvement to professional practice in the design of storm water drainage systems. Therefore, the developed IDF curves and models are recommended to the Warri Urban Authority for inclusion in her stormwater handbooks and manuals.


Author(s):  
R. S. Brito ◽  
M. C. Almeida ◽  
N. Silva ◽  
S. Barreto ◽  
F. Veríssimo

Abstract Urban water drainage systems' primary function is to transport sanitary or stormwater. The intrusion of saline waters has recognized detrimental effects. Especially in coastal areas, saline inflows can compromise performance by increasing the risk of untreated discharges, weakening the structural condition of concrete or metallic components, reducing the effectiveness of wastewater treatment processes and limiting the potential reuse for irrigation. Performance deterioration can be prevented by an early assessment of exposure to saline water, followed by timely actions to control its causes and consequences. The paper describes a procedure for diagnosing undue saline inflows. The procedure is based on the determination of saline inflow's magnitude, acceptance levels, and contribution to the system's performance. Contextual factors and performance indicators, and their reference values, are selected for the assessment. Options to address the problem are proposed, depending on the results. These options can relate to organizational, operational, and structural actions. Application to a case study allowed to validate the method and discuss the results. Here, saline volumes entering the system are quite relevant (almost 30%), posing problems regarding corrosion, treatment plant operation and significant concrete exposure to intermittent saline waters.


Sign in / Sign up

Export Citation Format

Share Document