kinetically controlled
Recently Published Documents


TOTAL DOCUMENTS

686
(FIVE YEARS 96)

H-INDEX

57
(FIVE YEARS 10)

ACS Nano ◽  
2021 ◽  
Author(s):  
Joshua D. Smith ◽  
Mattea M. Scanlan ◽  
Alexander N. Chen ◽  
Hannah M. Ashberry ◽  
Sara E. Skrabalak

2021 ◽  
pp. 133188
Author(s):  
Xi-Jie Lin ◽  
Yong-Gang Sun ◽  
Si-Jie Guo ◽  
Si-Dong Zhang ◽  
Yuan Liu ◽  
...  

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Qiu-Long Zhang ◽  
Liang-Liang Wang ◽  
Yan Liu ◽  
Jiao Lin ◽  
Liang Xu

AbstractLigand-oligonucleotide transduction provides the critical pathway to integrate non-nucleic acid molecules into nucleic acid circuits and nanomachines for a variety of strand-displacement related applications. Herein, a general platform is constructed to convert the signals of ligands into desired oligonucleotides through a precise kinetic control. In this design, the ligand-aptamer binding sequence with an engineered duplex stem is introduced between the toehold and displacement domains of the invading strand to regulate the strand-displacement reaction. Employing this platform, we achieve efficient transduction of both small molecules and proteins orthogonally, and more importantly, establish logical and cascading operations between different ligands for versatile transduction. Besides, this platform is capable of being directly coupled with the signal amplification systems to further enhance the transduction performance. This kinetically controlled platform presents unique features with designing simplicity and flexibility, expandable complexity and system compatibility, which may pave a broad road towards nucleic acid-based developments of sophisticated transduction networks.


Sign in / Sign up

Export Citation Format

Share Document