trophozoite stage
Recently Published Documents


TOTAL DOCUMENTS

87
(FIVE YEARS 27)

H-INDEX

26
(FIVE YEARS 3)

Author(s):  
Yanwei Qi ◽  
Yuhong Zhang ◽  
Quankai Mu ◽  
Guixing Zheng ◽  
Mengxin Zhang ◽  
...  

The development of Plasmodium parasites, a causative agent of malaria, requests two hosts and the completion of 11 different parasite stages during development. Therefore, an efficient and fast response of parasites to various complex environmental changes, such as ambient temperature, pH, ions, and nutrients, is essential for parasite development and survival. Among many of these environmental changes, temperature is a decisive factor for parasite development and pathogenesis, including the thermoregulation of rRNA expression, gametogenesis, and parasite sequestration in cerebral malaria. However, the exact mechanism of how Plasmodium parasites rapidly respond and adapt to temperature change remains elusive. As a fundamental and pervasive regulator of gene expression, RNA structure can be a specific mechanism for fine tuning various biological processes. For example, dynamic and temperature-dependent changes in RNA secondary structures can control the expression of different gene programs, as shown by RNA thermometers. In this study, we applied the in vitro and in vivo transcriptomic-wide secondary structurome approach icSHAPE to measure parasite RNA structure changes with temperature alteration at single-nucleotide resolution for ring and trophozoite stage parasites. Among 3,000 probed structures at different temperatures, our data showed structural changes in the global transcriptome, such as S-type rRNA, HRPII gene, and the erythrocyte membrane protein family. When the temperature drops from 37°C to 26°C, most of the genes in the trophozoite stage cause significantly more changes to the RNA structure than the genes in the ring stage. A multi-omics analysis of transcriptome data from RNA-seq and RNA structure data from icSHAPE reveals that the specific RNA secondary structure plays a significant role in the regulation of transcript expression for parasites in response to temperature changes. In addition, we identified several RNA thermometers (RNATs) that responded quickly to temperature changes. The possible thermo-responsive RNAs in Plasmodium falciparum were further mapped. To this end, we identified dynamic and temperature-dependent RNA structural changes in the P. falciparum transcriptome and performed a comprehensive characterization of RNA secondary structures over the course of temperature stress in blood stage development. These findings not only contribute to a better understanding of the function of the RNA secondary structure but may also provide novel targets for efficient vaccines or drugs.


2021 ◽  
Author(s):  
Samia Kadri ◽  
Kumiko Nakada-Tsukui ◽  
Natsuki Watanabe ◽  
Ghulam Jeelani ◽  
Tomoyoshi Nozaki

PTEN is a lipid phosphatase that is highly conserved and involved in a broad range of biological processes includingcytoskeletal reorganization, endocytosis, signal transduction, and cell migration in all eukaryotes. Although regulation of phosphatidylinositol (3,4,5)-trisphosphate [PtdIns(3,4,5)P3] signaling via PTEN has been well established in model organisms and mammals, it remains elusive in the parasitic protist E. histolytica, which heavily relies on PtdIns phosphate(s)-dependent membrane traffic, migration, and phago- and trogocytosis for its pathogenesis. In this study, we characterized the major PTEN from E. histolytica, EhPTEN1, which shows the highest expression at the transcript level in the trophozoite stage among 6 possible PTENs, to understand the significance of PtdIns(3,4,5)P3 signaling in this parasite. Live imaging of GFP-EhPTEN1 expressing amebic trophozoites showed localization mainly in the cytosol with a higher concentration at pseudopods and the extending edge of the phago- and trogocytic cups. Furthermore, quantitative analysis of phago- and trogocytosis using a confocal image cytometer showed that overexpression of EhPTEN1 caused reduction in trogo- and phagocytosis while transcriptional gene silencing of EhPTEN1 gene caused opposite phenotypes. These data suggest that EhPTEN1 has an inhibitory role in these biological processes. Conversely, EhPTEN1 acts as a positive regulator for fluid-phase and receptor-mediated endocytosis in E. histolytica trophozoites. Moreover, we showed that EhPTEN1 was required for optimal growth and migration of this parasite. Finally, the phosphatase activity of EhPTEN1 towards PtdIns(3,4,5)P3 was demonstrated, suggesting that the biological roles of EhPTEN1 are likely linked to its catalytic function. Taken together, these results indicate that EhPTEN1 differentially regulates multiple cellular activities essential for proliferation and pathogenesis of the organism, via PtdIns(3,4,5)P3 signaling. Elucidation of biological roles of PTEN and PtdIns(3,4,5)P3 signaling at the molecular levels promotes our understanding of the pathogenesis of this parasite and potentially leads to the design of novel therapeutics against amebiasis.


2021 ◽  
Author(s):  
Omobukola Solebo ◽  
Liqin Ling ◽  
Jing Zhou ◽  
Tian-Min Fu ◽  
Hangjun Ke

It is widely accepted that glycolysis alone is sufficient to support the energy demand of intraerythrocytic malaria parasites when they grow inside RBCs. However, here we show that the metabolic by-product pyrophosphate (PPi) is a critical energy source for ring stage development and the transition from the ring to trophozoite stage. During early phases of the asexual lifecycle, the parasite utilizes PfVP1 (Plasmodium falciparum vacuolar pyrophosphatase 1), an ancient PPi-driven proton pump, to pump protons across the parasite plasma membrane to maintain the membrane potential and cytosolic pH. Conditional deletion of PfVP1 leads to delayed ring stage development and a complete blockage of the ring to trophozoite transition, which can be partially rescued by Arabidopsis thaliana vacuolar pyrophosphatase 1, but not by the soluble pyrophosphatase from Saccharomyces cerevisiae. Proton-pumping pyrophosphatases are absent in humans and animals, which highlights the possibility of developing highly selective VP1 inhibitors against the malaria parasite.


2021 ◽  
Author(s):  
Avantika I. Ahiya ◽  
Suyash Bhatnagar ◽  
Joanne Morrisey ◽  
Josh R. Beck ◽  
Akhil B. Vaidya

AbstractPlasmodium spp. lack de novo cholesterol synthetic pathways and can only scavenge it from their host erythrocyte. Here we report that depletion of cholesterol from the erythrocyte plasma membrane by methyl-β-cyclodextrin (MBCD) has dramatic consequences. The removal of cholesterol results in invasion defects as well as inhibition of parasite development through the intra-erythrocytic cycle. These defects could be rescued by reconstitution with cholesterol and desmosterol but not with epicholesterol. By using live microscopy of fluorescently tagged trophozoite stage parasites, we detected rapid expulsion of the parasites from erythrocyte when exposed to MBCD for just 30 mins. Strikingly, the parasites transition from being intra-erythrocytic to extracellular within 10 seconds and do so without rupturing the erythrocyte membrane. These extruded parasites were still surrounded by the parasitophorous vacuolar membrane (PVM) and remained tethered to the erythrocyte. Electron microscopy revealed that although extracellular parasites retained their PVM, it was heavily compromised. Treatment with antimalarials that disrupt cholesterol homeostasis prior to MBCD exposure prevented the extrusion of trophozoites. These results reveal importance of cholesterol during the intra-erythrocytic development of P. falciparum and the dramatic consequences resulting from tampering with cholesterol content in the infected erythrocyte. These findings suggest dynamic nature of cholesterol within the infected erythrocyte that is critical for parasite survival.


2021 ◽  
Vol 14 (10) ◽  
pp. 1013
Author(s):  
Aitor Rizo-Liendo ◽  
Iñigo Arberas-Jiménez ◽  
Endika Martin-Encinas ◽  
Ines Sifaoui ◽  
María Reyes-Batlle ◽  
...  

Primary amoebic encephalitis (PAM) caused by the opportunistic pathogen Naegleria fowleri is characterized as a rapid and lethal infection of the brain which ends in the death of the patient in more than 90% of the reported cases. This amoeba thrives in warm water bodies and causes infection after individuals perform risky activities such as splashing or diving, mostly in non-treated water bodies such as lakes and ponds. Moreover, the infection progresses very fast and no fully effective molecules have currently been found to treat PAM. In this study, naphthyridines fused with chromenes or chromenones previously synthetized by the group were tested in vitro against the trophozoite stage of two strains of N. fowleri. In addition, the most active molecule was evaluated in order to check the induction of programmed cell death (PCD) in the treated amoebae. Compound 3 showed good anti-Naegleria activity (61.45 ± 5.27 and 76.61 ± 10.84 µM, respectively) against the two different strains (ATCC® 30808 and ATCC® 30215) and a good selectivity compared to the cytotoxicity values (>300 µM). In addition, it was able to induce PCD, causing DNA condensation, damage at the cellular membrane, reduction in mitochondrial membrane potential and ATP levels, and ROS generation. Hence, naphthyridines fused with chromenes or chromenones could be potential therapeutic agents against PAM in the near future.


2021 ◽  
Author(s):  
Mikha Gabriela ◽  
Kathryn Matthews ◽  
Cas Boshoven ◽  
Betty Kouskousis ◽  
David Steer ◽  
...  

Plasmodium falciparum exports ~10% of its proteome into its host erythrocyte to modify the host cell’s physiology. The Plasmodium export element (PEXEL) motif contained within the N-terminus of most exported proteins directs the trafficking of those proteins into the erythrocyte. To reach the host cell, the PEXEL motif of exported proteins are processed by the endoplasmic reticulum (ER) resident aspartyl protease plasmepsin V. Then, following secretion into the parasite-encasing parasitophorous vacuole, the mature exported protein must be unfolded and translocated across the parasitophorous vacuole membrane by the Plasmodium translocon of exported proteins (PTEX). PTEX is a protein-conducting channel consisting of the pore-forming protein EXP2, the protein unfoldase HSP101, and structural component PTEX150. The mechanism of how exported proteins are specifically trafficked from the parasite’s ER following PEXEL cleavage to PTEX complexes on the parasitophorous vacuole membrane is currently not understood. Here, we present evidence that EXP2 and PTEX150 form a stable subcomplex that facilitates HSP101 docking. We also demonstrate that HSP101 localises both within the parasitophorous vacuole and within the parasite’s ER throughout the ring and trophozoite stage of the parasite, coinciding with the timeframe of protein export. Interestingly, we found that HSP101 can form specific interactions with model PEXEL proteins in the parasite ER, irrespective of their PEXEL processing status. Collectively, our data suggest that HSP101 recognises and chaperones PEXEL proteins from the ER to the parasitophorous vacuole and given HSP101’s specificity for the EXP2-PTEX150 subcomplex, this provides a mechanism for how exported proteins are specifically targeted to PTEX for translocation into the erythrocyte.


Author(s):  
Joel H. Elizondo-Luévano ◽  
Oscar A. Pérez-Narváez ◽  
Eduardo Sánchez-García ◽  
Rocío Castro-Ríos ◽  
Magda E. Hernández-García ◽  
...  

Background: Parasitic infections represent one of the main public health problems in humans according to the WHO. Therefore, the need has arisen to find new treatments that can be used as an alternative cure to parasitosis. We aimed to investigate the in-vitro effects of the methanolic extract of Kalanchoe daigremontiana as well as its main component, quercetin against Entamoeba histolytica and Trichomonas vaginalis. Methods: For this purpose, the in-vitro activity of the methanol extract of K. daigremontiana also its main component, quercetin, against trophozoites of E. histolytica and T. vaginalis was evaluated, using the microassay technique. Furthermore, the antioxidant activity was determined. Finally, the cytotoxic and cytoprotective capacity was determined using the hemolysis technique. Results: The IC50 indicated that quercetin significantly (P < 0.05) inhibited the growth rate of the trophozoite stage of E. histolytica and T. vaginalis in comparison to the methanolic extract of K. daigremontiana (KalL). Also, quercetin significantly (P < 0.05) was a better antioxidant as compared with the positive control. In the evaluation of cytotoxicity effects, it could be observed that KalL as compared with quercetin exhibited more cytotoxicity against human erythrocytes. Quercetin significantly (P < 0.001) exhibited better cytoprotective activity compared to KalL. Conclusion: Both K. daigremontiana methanolic extract and quercetin alone demonstrated high antiparasitic activity against E. histolytica and T. vaginalis. However, the in-vivo efficacy of K. daigremontiana and quercetin also requires to be evaluated using an animal model.


2021 ◽  
Vol 5 (1) ◽  
Author(s):  
Nur Saidatul Aqilah Ja’afar ◽  
Nik Nor Imam Nik Mat Zin ◽  
Fatin Sofia Mohamad ◽  
Nurhidanatasha Abu-Bakar

Pyrogallol has a capability of generating free radicals like other antimalarial drugs such as artemisinin, which is thought to inhibit the proton pump located in the membrane of the Plasmodium falciparum digestive vacuole, thus alkalinising this acidic organelle. This study aimed to determine pH changes of the malaria parasite’s digestive vacuole following treatment with pyrogallol. The antimalarial activity of this compound was evaluated by a malarial SYBR Green 1 fluorescence-based assay to determine the 50% inhibitory concentration (IC50). Based on the IC50 value, different concentrations of pyrogallol were selected to ensure changes of the digestive vacuole pH were not due to parasite death. This was measured by flow cytometry after 4-hour pyrogallol treatment on the fluorescein isothiocyanate-dextran-accumulated digestive vacuole of the mid-trophozoite stage parasites. Pyrogallol showed a moderate antimalarial activity with the IC50 of 2.84 ± 9.40 µM. The treatment of 1.42, 2.84 and 5.67 µM pyrogallol increased 2.9, 3.0 and 3.1 units of the digestive vacuole pH, respectively as compared with the untreated parasite (pH 5.6 ± 0.78). The proton pump, V-type H+-ATPase might be inhibited by pyrogallol, hence causing the digestive vacuole pH alteration, which is similar with the result shown by a standard V-type H+-ATPase inhibitor, concanamycin A. This study provides a fundamental understanding on the antimalarial activity and mechanism of action of pyrogallol that has a potential to be the antimalarial drug candidate.


Author(s):  
Yanwei Qi ◽  
Yuhong Zhang ◽  
Guixing Zheng ◽  
Bingxia Chen ◽  
Mengxin Zhang ◽  
...  

It is widely accepted that the structure of RNA plays important roles in a number of biological processes, such as polyadenylation, splicing, and catalytic functions. Dynamic changes in RNA structure are able to regulate the gene expression programme and can be used as a highly specific and subtle mechanism for governing cellular processes. However, the nature of most RNA secondary structures in Plasmodium falciparum has not been determined. To investigate the genome-wide RNA secondary structural features at single-nucleotide resolution in P. falciparum, we applied a novel high-throughput method utilizing the chemical modification of RNA structures to characterize these structures. Structural data from parasites are in close agreement with the known 18S ribosomal RNA secondary structures of P. falciparum and can help to predict the in vivo RNA secondary structure of a total of 3,396 transcripts in the ring-stage and trophozoite-stage developmental cycles. By parallel analysis of RNA structures in vivo and in vitro during the Plasmodium parasite ring-stage and trophozoite-stage intraerythrocytic developmental cycles, we identified some key regulatory features. Recent studies have established that the RNA structure is a ubiquitous and fundamental regulator of gene expression. Our study indicate that there is a critical connection between RNA secondary structure and mRNA abundance during the complex biological programme of P. falciparum. This work presents a useful framework and important results, which may facilitate further research investigating the interactions between RNA secondary structure and the complex biological programme in P. falciparum. The RNA secondary structure characterized in this study has potential applications and important implications regarding the identification of RNA structural elements, which are important for parasite infection and elucidating host-parasite interactions and parasites in the environment.


Author(s):  
Sudipta Das ◽  
Bhaskar Roy ◽  
Saswata Chakrabarty

The enormous complexity of the eukaryotic ribosome has been a real challenge in unlocking the mechanistic aspects of its amazing molecular function during mRNA translation and many non-canonical activities of ribosomal proteins in eukaryotic cells. While exploring the uncanny nature of ribosomal P proteins in malaria parasites Plasmodium falciparum, the 60S stalk ribosomal P2 protein has been shown to get exported to the infected erythrocyte (IE) surface as an SDS resistant oligomer during the early to mid trophozoite stage. Inhibiting IE surface P2 either by monoclonal antibody or through genetic knockdown resulted in nuclear division arrest of the parasite. This very strange and serendipitous finding has led us to explore more about un-canonical cell biology and structural involvement of P2 protein in Plasmodium in the search for a novel biochemical role during parasite propagation in the human host.


Sign in / Sign up

Export Citation Format

Share Document