venom protein
Recently Published Documents


TOTAL DOCUMENTS

137
(FIVE YEARS 41)

H-INDEX

24
(FIVE YEARS 6)

2021 ◽  
Vol 12 ◽  
Author(s):  
Bhabana Das ◽  
Anthony J. Saviola ◽  
Ashis K. Mukherjee

The Indian red scorpion (Mesobuthus tamulus) is one of the world’s deadliest scorpions, with stings representing a life-threatening medical emergency. This species is distributed throughout the Indian sub-continent, including eastern Pakistan, eastern Nepal, and Sri Lanka. In India, Indian red scorpions are broadly distributed in western Maharashtra, Saurashtra, Kerala, Andhra Pradesh, Tamil Nadu, and Karnataka; however, fatal envenomations have been recorded primarily in the Konkan region of Maharashtra. The Indian red scorpion venom proteome comprises 110 proteins belonging to 13 venom protein families. The significant pharmacological activity is predominantly caused by the low molecular mass non-enzymatic Na+ and K+ ion channel toxins. Other minor toxins comprise 15.6% of the total venom proteome. Indian red scorpion stings induce the release of catecholamine, which leads to pathophysiological abnormalities in the victim. A strong correlation has been observed between venom proteome composition and local (swelling, redness, heat, and regional lymph node involvement) and systemic (tachycardia, mydriasis, hyperglycemia, hypertension, toxic myocarditis, cardiac failure, and pulmonary edema) manifestations. Immediate administration of antivenom is the preferred treatment for Indian red scorpion stings. However, scorpion-specific antivenoms have exhibited poor immunorecognition and neutralization of the low molecular mass toxins. The proteomic analysis also suggests that Indian red scorpion venom is a rich source of pharmacologically active molecules that may be envisaged as drug prototypes. The following review summarizes the progress made towards understanding the venom proteome of the Indian red scorpion and addresses the current understanding of the pathophysiology associated with its sting.


Toxins ◽  
2021 ◽  
Vol 13 (4) ◽  
pp. 257
Author(s):  
Suwatjanee Naephrai ◽  
Supakit Khacha-ananda ◽  
Pornsiri Pitchakarn ◽  
Churdsak Jaikang

Tetraponera rufonigra (Arboreal Bicoloured Ant) venom induces pain, inflammation, and anaphylaxis in people and has an increased incident in Southeast Asia regions. The bioactive components and mechanism of action of the ant venom are still limited. The aim of this research was to identify the protein composition and inflammatory process of the ant venom by using RAW 264.7 macrophage cells. The major venom proteins are composed of 5’ nucleotidase, prolyl endopeptidase-like, aminopeptidase N, trypsin-3, venom protein, and phospholipase A2 (PLA2). The venom showed PLA2 activity and represented 0.46 μg of PLA2 bee venom equivalent/μg crude venom protein. The venom induced cytotoxic in a dose- and time-dependent manner with IC20 approximately at 4.01 µg/mL. The increased levels of COX-2 and PGE2 were observed after 1 h of treatment correlating with an upregulation of COX-2 expression. Moreover, the level of mPGES-1 expression was obviously increased after 12 h of venom induction. Hence, our results suggested that the induction of COX-2/mPGEs-1 pathway could be a direct pathway for the ant venom-induced inflammation.


Author(s):  
Mariola Słowińska ◽  
Laura Pardyak ◽  
Ewa Liszewska ◽  
Sylwia Judycka ◽  
Joanna Bukowska ◽  
...  

Abstract Turkey semen contains cysteine-rich secretory proteins (CRISPs) that belong to the dominant seminal plasma proteins. We aimed to isolate and characterize CRISP from turkey seminal plasma and evaluate its possible involvement in yellow semen syndrome (YSS). YSS, which is well characterized, causes reduced fertility and hatchability. The protein was purified using hydrophobic interaction, gel filtration, and reverse phase chromatography. It then was subjected to identification by mass spectrometry, analysis of physicochemical properties and specific antibody production. The biological function of the isolated protein was tested and included its effects on sperm motility and migration and sperm-egg interactions. Sperm motility was measured with the CASA system using Hobson Sperm Tracker. The reproductive tract of turkey toms was analyzed for gene expression; immunohistochemistry was used for protein localization in the male reproductive tract, spermatozoa, and inner perivitelline layer. The isolated protein was identified as cysteine-rich venom protein-like isoform X2 (CRVP X2; XP_010706464.1) and contained feature motifs of CRISP family proteins. Turkey CRVP X2 was present in both spermatozoa and seminal plasma. The extensive secretion of CRVP X2 by the epithelial cells of the epididymis and ductus deferens suggests its involvement in post-testicular sperm maturation. The internally localized CRVP X2 in the proximal part of the sperm tail might be responsible for stimulation of sperm motility. CRVP X2 on the sperm head might be involved in several events prior to fusion and may also participate in gamete fusion itself. Although the mechanisms by which CRPV X2 mediates fertilization are still unknown, the involvement of complementary sites cannot be excluded. The disturbance of CRVP X2 expression can serve as an etiologic factor of YSS in the turkey. This study expands the understanding of the detailed mechanism of fertilization in birds by clarifying the specific role of CRVP X2.


2021 ◽  
Author(s):  
Muralidharan Vanuopadath ◽  
Dileepkumar Raveendran ◽  
Bipin Gopalakrishnan Nair ◽  
Sudarslal Sadasivan Nair

AbstractVenom proteome profiling is important to understand the toxicology and treatment of persons poisoned by animal venoms. An in depth understanding of the pharmacological mechanisms induced by venom toxins could help in the discovery of novel drug molecules. In the current study, we aimed to delineate the venom toxins of Indian cobra (Naja naja) from the Western Ghats of India through SDS-PAGE and reversed-phase HPLC followed by Q-TOF LC-MS/MS analysis, incorporating PEAKS and Novor assisted de novo sequencing methodologies. A total of 143 proteins distributed across 17 different enzymatic and non-enzymatic venom protein families were identified. The de novo analysis exclusively yielded 59 peptides representing 28 venom protein families. Among these, glutathione peroxidase and endonuclease were reported for the first time in Indian cobra venom. Immunological cross-reactivity of cobra venom assessed using Indian polyvalent antivenoms suggested that VINS showed better EC50 (2.48 µg/mL) values than that of PSAV (6.04 µg/mL) and Virchow (6.03 µg/mL) antivenoms. Also, immunoaffinity chromatography performed using VINS antivenom indicated that it failed to detect few low molecular mass proteins (<10 kDa) that include three-finger toxins, phospholipase A2s and kunitz-type serine protease inhibitors. Taken together, the present study enabled a large-scale characterization of the venom proteome of Naja naja that offers valuable insights on the possible pharmacological mechanisms and future therapeutic potential of hitherto unexplored snake venom constituents.SignificanceThe present work describes the venom proteome characterization of Naja naja collected from the Western Ghats region in India, incorporating conventional proteomics approaches as well as de novo sequencing methods. Interestingly, we were able to determine proteins belong to glutathione peroxidase and endonuclease family, which was not reported in any of the previous studies on Naja naja venom. Notably, our study has reported the highest number of proteins from cobra venom so far. Also, the current study highlights the importance of developing region-specific antivenoms for improving the specificity and cross-neutralization potential of antivenoms.HighlightsProteomics of cobra venom resulted in the identification of 143 proteins.De novo approaches exclusively yielded 59 peptides representing 28 proteins.Glutathione peroxidase and endonuclease were identified for the first time in Indian cobra venom.Indian polyvalent antivenoms showed varying cross-reactivity towards cobra venom.VINS antivenom failed to detect few low molecular mass proteins (< 10 kDa).


Toxins ◽  
2021 ◽  
Vol 13 (2) ◽  
pp. 140
Author(s):  
Chien-Chun Liu ◽  
Ya-Han Yang ◽  
Yung-Chin Hsiao ◽  
Po-Jung Wang ◽  
Jo-Chuan Liu ◽  
...  

Snake envenomation is a serious public health issue in many tropical and subtropical countries. Accurate diagnosis and immediate antivenom treatment are critical for effective management. However, the venom concentration in the victims’ plasma is usually low, representing one of the bottlenecks in developing clinically applicable assays for venom detection and snakebite diagnosis. In this study, we attempted to develop a simple method for rapid enrichment of venom proteins from human plasma to facilitate detection. Our experiments showed that several major protein components of both Naja atra (N. atra) and Bungarus multicinctus (B. multicinctus) venoms have higher isoelectric point (pI) values relative to high-abundance human plasma proteins and could be separated via strong cation exchange–high-performance liquid chromatography (SCX-HPLC). Based on this principle, we developed an SCX tip column-based protocol for rapid enrichment of N. atra and B. multicinctus venom proteins from human plasma. Application of liquid chromatography-tandem mass spectrometry (LC-MS/MS) led to the identification of cytotoxin and beta-bungarotoxin as the major proteins enriched by the SCX tip column in each venom sample. The entire process of venom enrichment could be completed within 10–15 min. Combination of this method with our previously developed lateral flow strip assays (rapid test) significantly enhanced the sensitivity of the rapid test, mainly via depletion of the plasma protein background, as well as increase in venom protein concentration. Notably, the SCX tip column-based enrichment method has the potential to efficiently enrich other Elapidae snake venoms containing proteins with higher pI values, thereby facilitating venom detection with other assays. This simple and rapid sample preparation method should aid in improving the clinical utility of diagnostic assays for snakebite.


Toxins ◽  
2021 ◽  
Vol 13 (2) ◽  
pp. 112
Author(s):  
Bianca op den Brouw ◽  
Francisco C. P. Coimbra ◽  
Lachlan A. Bourke ◽  
Tam Minh Huynh ◽  
Danielle H. W. Vlecken ◽  
...  

Snakes of the genera Pseudocerastes and Eristicophis (Viperidae: Viperinae) are known as the desert vipers due to their association with the arid environments of the Middle East. These species have received limited research attention and little is known about their venom or ecology. In this study, a comprehensive analysis of desert viper venoms was conducted by visualising the venom proteomes via gel electrophoresis and assessing the crude venoms for their cytotoxic, haemotoxic, and neurotoxic properties. Plasmas sourced from human, toad, and chicken were used as models to assess possible prey-linked venom activity. The venoms demonstrated substantial divergence in composition and bioactivity across all experiments. Pseudocerastes urarachnoides venom activated human coagulation factors X and prothrombin and demonstrated potent procoagulant activity in human, toad, and chicken plasmas, in stark contrast to the potent neurotoxic venom of P. fieldi. The venom of E. macmahonii also induced coagulation, though this did not appear to be via the activation of factor X or prothrombin. The coagulant properties of P. fieldi and P. persicus venoms varied among plasmas, demonstrating strong anticoagulant activity in the amphibian and human plasmas but no significant effect in that of bird. This is conjectured to reflect prey-specific toxin activity, though further ecological studies are required to confirm any dietary associations. This study reinforces the notion that phylogenetic relatedness of snakes cannot readily predict venom protein composition or function. The significant venom variation between these species raises serious concerns regarding antivenom paraspecificity. Future assessment of antivenom is crucial.


Sign in / Sign up

Export Citation Format

Share Document