pressure balance
Recently Published Documents


TOTAL DOCUMENTS

495
(FIVE YEARS 153)

H-INDEX

28
(FIVE YEARS 7)

Nutrients ◽  
2021 ◽  
Vol 14 (1) ◽  
pp. 151
Author(s):  
Jing Wang ◽  
Guoliang Wang ◽  
Yufeng Zhang ◽  
Runguang Zhang ◽  
Youlin Zhang

In recent years, angiotensin-converting enzyme (ACE) inhibitory peptide has become a research hotspot because of its essential role in maintaining human blood pressure balance. In this study, two novel ACE inhibitory peptides of Val-Glu-Arg-Gly-Arg-Arg-lle-Thr-Ser-Val (Valine-Glutamate-Arginine-Glycine-Arginine-Arginine-Isoleucine-Threonine-Serine-Valine, VERGRRITSV) and Phe-Val-Ile-Glu-Pro-Asn-Ile-Thr-Pro-Ala (Phenylalanine-Valine-Isoleucine-Glutamate-Proline-Asparagine-Isoleucine-Threonine-Proline-Alanine, FVIEPNITPA) were isolated and purified from defatted walnut meal hydrolysates through a series of preparation processes including ultrafiltration, Sephadex G-15 gel chromatography, and reverse high performance liquid chromatography (RP-HPLC). Both peptides showed high ACE inhibitory activities. The molecular docking study revealed that VERGRRITSV and FVIEPNITPA were primarily attributed to the formation of strong hydrogen bonds with the active pockets of ACE. The binding free energies of VERGRRITSV and FVIEPNITPA with ACE were −14.99 and −14.69 kcal/mol, respectively. Moreover, these ACE inhibitory peptides showed good stability against gastrointestinal enzymes digestion and common food processing conditions (e.g., temperature and pH, sugar, and salt treatments). Furthermore, animal experiment results indicated that the administration of VERGRRITSV or FVIEPNITPA exhibited antihypertensive effects in spontaneously hypertensive rats. Our results demonstrated that walnut could be a potential source of bioactive peptides with ACE inhibitory activity.


2021 ◽  
Author(s):  
Axel Turolla ◽  
Massimo Zampato ◽  
Stefano Carminati ◽  
Paolo Ferrara

Abstract This paper describes the design and implementation of Acoustic Micro Electro Mechanical Systems (hereinafter referred to asA-MEMS)working in fluid-coupling mode for HP/HT specifications relevant to downhole applications such as drilling, well and reservoir monitoring. Many cutting edges applications ofA-MEMS in Oil & Gas industry are envisaged. The current work refers to the case study of a "Look Ahead of the Bit"/geopressure monitoring technique (hereinafter referred to asPPM) developed by the authors. A–MEMS with magnetic shuttle transducers have been designed so that they are not affected by environmental pressure like piezoelectric devices commonly used in MWD commercial sonic tools, which are impaired by volumetric shrinking/expansion working principle. This performance is also achieved by embedding an environmental pressure compensator tuned in the whole working bandwidth to grant pressure balance even with oscillatory motion at sonic frequencies (up to 5 kHz). Transmitter acoustic power and receiver sensitivity have been optimized in a bandwidth between 500 and 3500 Hz. A couple of A–MEMS prototypes have been built and successfully tested by using an oil filled pressure vessel at downhole T–P conditions (200 °C, 700bar) and an ad-hoc measurement setup including force, displacement, temperature sensors, transmitter (TX) driver, receiver (RX) lock-in amplifier and anacquisition system. Moreover, modal analysis at typical drilling conditions has been carried out by Stewart platform. Shock up to 1000 g and random vibrations up to 12 g RMS in 5 ÷400 Hz bandwidth have been tested. A–MEMS performance have turned out to be consistent with theoretical model predictions andhave exhibited robustness to T P variations and applied structural stress. PPM method has been validated through a triaxial compression cell in a rock mechanics laboratory, implementing a lab scale scenario with a cap rock located above a permeable rock, undergoing all geopressures of interest. However, piezo transducers used in the experiment underwent a significant failure/damage rate along with performance degrading at pressure increasing. These observations confirmed and motivated the need for A-MEMS technology development in downhole applications.


2021 ◽  
Vol 18 ◽  
pp. 100342
Author(s):  
Gigin Ginanjar ◽  
In-Mook Choi

2021 ◽  
Vol 9 (12) ◽  
pp. 1360
Author(s):  
Wei Wang ◽  
Xi Wang ◽  
Zhengwei Wang ◽  
Mabing Ni ◽  
Chunan Yang

The instability of the no-load working condition of the pump turbine directly affects the grid connection of the unit, and will cause vibration and damage to the components of the unit in severe cases. In this paper, a three-dimensional full flow numerical model including the runner gap and the pressure-balance pipe was established. The method SST k-ω model was used to predict the internal flow characteristics of the pump turbine. The pressure pulsation of the runner under different operating conditions during the no-load process was compared. Because the rotation speed, flow rate, and guide vane opening of the unit change in a small range during the no-load process, the pressure pulsation characteristics of the runner are basically the same. Therefore, a working condition was selected to analyze the transient characteristics of the flow field, and it was found that there was a high-speed ring in the vaneless zone, and a stable channel vortex was generated in the runner flow passage. Analyzing the axial water thrust of each part of the runner, it was found that the axial water thrust of the runner gap was much larger than the axial water thrust of the runner blades, and it changed with time periodically. It was affected by rotor stator interaction. The main frequency was expressed as a multiple of the number of guide vanes, that is, vanes passing frequency, 22fn. During the entire no-load process, the axial water thrust of the runner changed slowly with time and fluctuated slightly.


2021 ◽  
Vol 923 (2) ◽  
pp. 158
Author(s):  
David Ruffolo ◽  
Nawin Ngampoopun ◽  
Yash R. Bhora ◽  
Panisara Thepthong ◽  
Peera Pongkitiwanichakul ◽  
...  

Abstract The Parker Solar Probe (PSP) spacecraft is performing the first in situ exploration of the solar wind within 0.2 au of the Sun. Initial observations confirmed the Alfvénic nature of aligned fluctuations of the magnetic field B and velocity V in solar wind plasma close to the Sun, in domains of nearly constant magnetic field magnitude ∣ B ∣, i.e., approximate magnetic pressure balance. Such domains are interrupted by particularly strong fluctuations, including but not limited to radial field (polarity) reversals, known as switchbacks. It has been proposed that nonlinear Kelvin–Helmholtz instabilities form near magnetic boundaries in the nascent solar wind leading to extensive shear-driven dynamics, strong turbulent fluctuations including switchbacks, and mixing layers that involve domains of approximate magnetic pressure balance. In this work we identify and analyze various aspects of such domains using data from the first five PSP solar encounters. The filling fraction of domains, a measure of Alfvénicity, varies from median values of 90% within 0.2 au to 38% outside 0.9 au, with strong fluctuations. We find an inverse association between the mean domain duration and plasma β. We examine whether the mean domain duration is also related to the crossing time of spatial structures frozen into the solar wind flow for extreme cases of the aspect ratio. Our results are inconsistent with long, thin domains aligned along the radial or Parker spiral direction, and compatible with isotropic domains, which is consistent with prior observations of isotropic density fluctuations or flocculae in the solar wind.


2021 ◽  
Vol 923 (2) ◽  
pp. 174
Author(s):  
S. D. Bale ◽  
T. S. Horbury ◽  
M. Velli ◽  
M. I. Desai ◽  
J. S. Halekas ◽  
...  

Abstract One of the striking observations from the Parker Solar Probe (PSP) spacecraft is the prevalence in the inner heliosphere of large amplitude, Alfvénic magnetic field reversals termed switchbacks. These δ B R / B ∼  ( 1 ) fluctuations occur over a range of timescales and in patches separated by intervals of quiet, radial magnetic field. We use measurements from PSP to demonstrate that patches of switchbacks are localized within the extensions of plasma structures originating at the base of the corona. These structures are characterized by an increase in alpha particle abundance, Mach number, plasma β and pressure, and by depletions in the magnetic field magnitude and electron temperature. These intervals are in pressure balance, implying stationary spatial structure, and the field depressions are consistent with overexpanded flux tubes. The structures are asymmetric in Carrington longitude with a steeper leading edge and a small (∼1°) edge of hotter plasma and enhanced magnetic field fluctuations. Some structures contain suprathermal ions to ∼85 keV that we argue are the energetic tail of the solar wind alpha population. The structures are separated in longitude by angular scales associated with supergranulation. This suggests that these switchbacks originate near the leading edge of the diverging magnetic field funnels associated with the network magnetic field—the primary wind sources. We propose an origin of the magnetic field switchbacks, hot plasma and suprathermals, alpha particles in interchange reconnection events just above the solar transition region and our measurements represent the extended regions of a turbulent outflow exhaust.


Author(s):  
Mengfei Zhou ◽  
Xuan Xu ◽  
Yuxuan Zhang ◽  
Chunyan Jiao ◽  
Yu Tang ◽  
...  

AbstractCarbonate gas reservoirs in China are rich in reserves. In the development process, there are many reserves with low permeability, low efficiency and low recovery degree. It is difficult to stabilize gas well production and prolong its life cycle. Under the condition of original water saturation (Sw) of 0%, 20%, 40%, 55% and 65%, respectively, the physical simulation experiment of gas reservoirs depletion development was carried out by using long core multi-point embedded pressure measuring system. The long cores with average gas permeability of 2.300 mD, 0.485 mD and 0.046 mD (assembled from 10 carbonate cores) were used to carry out this experiment. During the experiment, the pressure dynamics at different positions inside the long core and the gas production dynamics at the outlet were recorded in real time to reveal the production performance and reserves utilization law of carbonate gas reservoirs. The results show that the stable production period of tight reservoir in carbonate gas reservoirs is short, and the low production period is relatively long. The stable production time and recovery rate of gas reservoir increase with the increase of reservoir permeability and decrease with the increase of water saturation. The production of tight carbonate gas reservoirs with permeability less than 0.1 mD is greatly affected by pore water, and the reservoir pressure distribution shows a steep pressure drop funnel, and the reserves far from well are rarely used. Therefore, the reserves far from well should be utilized by closing well to restore formation pressure balance, densifying well pattern or transforming reservoir. The variation range of water saturation in the development of carbonate gas reservoirs is influenced by reservoir permeability and water saturation, and closely related to formation pressure gradient in production process. It decreases with the increase of reservoir permeability and increases with the increase of original water saturation. The research results provide a theoretical basis for understanding the relationship between physical properties of carbonate gas reservoirs and production performance, reserves utilization law, and realizing balanced utilization, efficient development and long-term stable production of carbonate gas reservoirs.


Sign in / Sign up

Export Citation Format

Share Document