perivascular adipose tissue
Recently Published Documents


TOTAL DOCUMENTS

664
(FIVE YEARS 269)

H-INDEX

54
(FIVE YEARS 9)

2021 ◽  
Vol 22 (24) ◽  
pp. 13671
Author(s):  
Marcelo Queiroz ◽  
Adriana Leandro ◽  
Lara Azul ◽  
Artur Figueirinha ◽  
Raquel Seiça ◽  
...  

We investigated the effects of luteolin on metabolism, vascular reactivity, and perivascular adipose tissue (PVAT) in nonobese type 2 diabetes mellitus animal model, Goto-Kakizaki (GK) rats. Methods: Wistar and GK rats were divided in two groups: (1) control groups treated with vehicle; (2) groups treated with luteolin (10 mg/kg/day, for 2 months). Several metabolic parameters such as adiposity index, lipid profile, fasting glucose levels, glucose and insulin tolerance tests were determined. Endothelial function and contraction studies were performed in aortas with (PVAT+) or without (PVAT−) periaortic adipose tissue. We also studied vascular oxidative stress, glycation and assessed CRP, CCL2, and nitrotyrosine levels in PVAT. Results: Endothelial function was impaired in diabetic GK rats (47% (GK − PVAT) and 65% (GK + PVAT) inhibition of maximal endothelial dependent relaxation) and significantly improved by luteolin treatment (29% (GK − PVAT) and 22% (GK + PVAT) inhibition of maximal endothelial dependent relaxation, p < 0.01). Vascular oxidative stress and advanced glycation end-products’ levels were increased in aortic rings (~2-fold, p < 0.05) of diabetic rats and significantly improved by luteolin treatment (to levels not significantly different from controls). Periaortic adipose tissue anti-contractile action was significantly rescued with luteolin administration (p < 0.001). In addition, luteolin treatment significantly recovered proinflammatory and pro-oxidant PVAT phenotype, and improved systemic and metabolic parameters in GK rats. Conclusions: Luteolin ameliorates endothelial dysfunction in type 2 diabetes and exhibits therapeutic potential for the treatment of vascular complications associated with type 2 diabetes.


Author(s):  
Haneen S. Dwaib ◽  
Ghina Ajouz ◽  
Ibrahim AlZaim ◽  
Rim Rafeh ◽  
Ali Mroueh ◽  
...  

Background The complexity of the interaction between metabolic dysfunction and cardiovascular complications has long been recognized to extend beyond simple perturbations of blood glucose levels. Yet, structured interventions targeting the root pathologies are not forthcoming. Growing evidence implicates the inflammatory changes occurring in perivascular adipose tissue (PVAT) as early instigators of cardiovascular deterioration. Methods and Results We used a nonobese prediabetic rat model with localized PVAT inflammation induced by hypercaloric diet feeding, which dilutes inorganic phosphorus (Pi) to energy ratio by 50%, to investigate whether Pi supplementation ameliorates the early metabolic impairment. A 12‐week Pi supplementation at concentrations equivalent to and twice as much as that in the control diet was performed. The localized PVAT inflammation was reversed in a dose‐dependent manner. The increased expression of UCP1 (uncoupling protein1), HIF‐1α (hypoxia inducible factor‐1α), and IL‐1β (interleukin‐1β), representing the hallmark of PVAT inflammation in this rat model, were reversed, with normalization of PVAT macrophage polarization. Pi supplementation restored the metabolic efficiency consistent with its putative role as an UCP1 inhibitor. Alongside, parasympathetic autonomic and cerebrovascular dysfunction function observed in the prediabetic model was reversed, together with the mitigation of multiple molecular and histological cardiovascular damage markers. Significantly, a Pi‐deficient control diet neither induced PVAT inflammation nor cardiovascular dysfunction, whereas Pi reinstatement in the diet after a 10‐week exposure to a hypercaloric low‐Pi diet ameliorated the dysfunction. Conclusions Our present results propose Pi supplementation as a simple intervention to reverse PVAT inflammation and its early cardiovascular consequences, possibly through the interference with hypercaloric‐induced increase in UCP1 expression/activity.


Biomedicines ◽  
2021 ◽  
Vol 9 (12) ◽  
pp. 1820
Author(s):  
Xiuying Liang ◽  
Haijing Guan ◽  
Jingwen Sun ◽  
Yan Qi ◽  
Wenjuan Yao

Perivascular adipose tissue (PVAT) homeostasis plays an important role in maintaining vascular function, and PVAT dysfunction may induce several pathophysiological situations. In this study, we investigated the effect and mechanism of the local angiotensin II (Ang II) on PVAT. High-throughput comparative proteomic analysis, based on TMT labeling combined with LC-MS/MS, were performed on an in vivo Ang II infusion mice model to obtain a comprehensive view of the protein ensembles associated with thoracic PVAT (tPVAT) dysfunction induced by Ang II. In total, 5037 proteins were confidently identified, of which 4984 proteins were quantified. Compared with the saline group, 145 proteins were upregulated and 146 proteins were downregulated during Ang II-induced tPVAT pathogenesis. Bioinformatics analyses revealed that the most enriched GO terms were annotated as gene silencing, monosaccharide binding, and extracellular matrix. In addition, some novel proteins, potentially associated with Ang II infusion, were identified, such as acyl-CoA carboxylase α, very long-chain acyl-CoA synthetase (ACSVL), uncoupling protein 1 (UCP1), perilipin, RAS protein-specific guanine nucleotide-releasing factor 2 (RasGRF2), and hypoxia inducible factor 1α (HIF-1α). Ang II could directly participate in the regulation of lipid metabolism, transportation, and adipocyte differentiation by affecting UCP1 and perilipin. Importantly, the key KEGG pathways were involved in fatty acid biosynthesis, FABP3-PPARα/γ, RasGRF2-ERK-HIF-1α, RasGRF2-PKC-HIF-1α, and STAT3-HIF-1α axis. The present study provided the most comprehensive proteome profile of mice tPVAT and some novel insights into Ang II-mediated tPVAT dysfunction and will be helpful for understanding the possible relationship between local RAS activation and PVAT dysfunction.


2021 ◽  
Vol 20 (7) ◽  
pp. 2993
Author(s):  
V. I. Podzolkov ◽  
A. E. Bragina ◽  
K. K. Osadchiy ◽  
Yu. N. Rodionova ◽  
Z. B. Jafarova ◽  
...  

Aim. To study the relationship between the volume of perivascular adipose tissue (PVAT) and the vascular wall lesion.Material and methods. The study included 318 patients without cardiovascular disease (mean age, 63,5±13,7 years). Hypertension was detected in 268 (84,3%) patients. All patients underwent assessment of anthropometric characteristics, lipid profile, arterial wall stiffness with the estimation of cardio-ankle vascular index, intima-media thickness, brachial artery endothelial vasomotor function. Chest computed tomography was performed with the estimation of the volumes of PVAT and pericardial adipose tissue (PAT).Results. The volume of PVAT, on average, was 0,3 [0,2; 0,4] cm3 . The VAT volume was significantly higher in obese individuals when compared with patients with normal body weight: 0,4 [0,3; 0,5] vs 0,25 [0,2; 0,4] cm3 (p=0,0007). The VAT volume was higher in individuals with an increased CAVI level when compared with patients with normal CAVI values: 0,4 [0,3; 0,5] vs 0,3 [0,25; 0,3] (p=0,02). A significant correlation was found between the VAT volume and body mass index (r=0,27, p<0,005), waist circumference (r=0,41, p<0,005), CAVI (r=0,49, p<0,05), impaired endothelium-dependent brachial artery vasodilation (r=0,38, p<0,05). When performing multiple linear regression, a significant relationship of CAVI was found with age (β±SE, 0,51±0,15; p=0,002) and volume of PVAT (β±SE, 0,41±0,13; p=0,005).Conclusion. The results indicate the relationship of PVAT with visceral obesity and vascular wall stiffness parameters.


2021 ◽  
Vol 12 ◽  
Author(s):  
Yibin Wang ◽  
Fatima Yildiz ◽  
Andrey Struve ◽  
Mario Kassmann ◽  
Lajos Markó ◽  
...  

Aging is an independent risk factor for hypertension, cardiovascular morbidity, and mortality. However, detailed mechanisms linking aging to cardiovascular disease are unclear. We studied the aging effects on the role of perivascular adipose tissue and downstream vasoconstriction targets, voltage-dependent KV7 channels, and their pharmacological modulators (flupirtine, retigabine, QO58, and QO58-lysine) in a murine model. We assessed vascular function of young and old mesenteric arteries in vitro using wire myography and membrane potential measurements with sharp electrodes. We also performed bulk RNA sequencing and quantitative reverse transcription-polymerase chain reaction tests in mesenteric arteries and perivascular adipose tissue to elucidate molecular underpinnings of age-related phenotypes. Results revealed impaired perivascular adipose tissue-mediated control of vascular tone particularly via KV7.3–5 channels with increased age through metabolic and inflammatory processes and release of perivascular adipose tissue-derived relaxation factors. Moreover, QO58 was identified as novel pharmacological vasodilator to activate XE991-sensitive KCNQ channels in old mesenteric arteries. Our data suggest that targeting inflammation and metabolism in perivascular adipose tissue could represent novel approaches to restore vascular function during aging. Furthermore, KV7.3–5 channels represent a promising target in cardiovascular aging.


2021 ◽  
Vol 13 ◽  
Author(s):  
Jiaolei Jin ◽  
Rui Huang ◽  
Qiuyue Chen ◽  
Boxi Ke ◽  
Taotao Tao ◽  
...  

Background: Perivascular adipose tissue (PVAT) imaging can be used in clinical practice as a surrogate marker of vascular disease. We aimed to analyze the association between the density of carotid artery PVAT and clinical features and outcomes in stroke patients treated with mechanical thrombectomy.Methods: A total of 183 consecutive patients treated with mechanical thrombectomy due to anterior circulation large vessel occlusion were retrospectively included from January 2016 to May 2021. The density of carotid artery PVAT was evaluated by preoperative computed tomography angiography. Successful arterial recanalization was defined as a modified Thrombolysis in Cerebral Infarction score of 2b-3 on the final angiographic examination. Poor functional outcome was defined as a modified Rankin Scale (mRS) score &gt; 2 at 3 months after stroke. We assessed the independent effect of carotid artery PVAT density on revascularization, functional outcome, and mortality using logistic regression models adjusted for relevant confounders.Results: Patients with large artery atherosclerotic stroke have higher carotid artery PVAT density than patients with other stroke etiologies (–65.82 ± 12.96 vs. –75.77 ± 13.44, P &lt; 0.001). Higher carotid artery PVAT density was associated with unsuccessful recanalization [adjusted odds ratio (AOR) (95% CI), 2.968 (1.292, 6.819), P = 0.010], and poor outcome [AOR (95% CI), 2.704 (1.610, 4.541), P &lt; 0.001] and mortality [AOR (95% CI), 1.894 (1.040, 3.449), P = 0.037] at 3 months in stroke patients treated with thrombectomy.Conclusion: Higher carotid artery PVAT density before mechanical thrombectomy is an indicator of worse postprocedural arterial revascularization and a worse functional outcome in acute stroke patients.


Nutrients ◽  
2021 ◽  
Vol 13 (11) ◽  
pp. 4024
Author(s):  
Peter Kip ◽  
Thijs J. Sluiter ◽  
Jodene K. Moore ◽  
Abby Hart ◽  
Jack Ruske ◽  
...  

(1) Background: Vascular surgery operations are hampered by high failure rates and frequent occurrence of peri-operative cardiovascular complications. In pre-clinical studies, pre-operative restriction of proteins and/or calories (PCR) has been shown to limit ischemia-reperfusion damage, slow intimal hyperplasia, and improve metabolic fitness. However, whether these dietary regimens are feasible and safe in the vascular surgery patient population remains unknown. (2) Methods: We performed a randomized controlled trial in patients scheduled for any elective open vascular procedure. Participants were randomized in a 3:2 ratio to either four days of outpatient pre-operative PCR (30% calorie, 70% protein restriction) or their regular ad-libitum diet. Blood was drawn at baseline, pre-operative, and post-operative day 1 timepoints. A leukocyte subset flow cytometry panel was performed at these timepoints. Subcutaneous/perivascular adipose tissue was sampled and analyzed. Follow-up was one year post-op. (3) Results: 19 patients were enrolled, of whom 11 completed the study. No diet-related reasons for non-completion were reported, and there was no intervention group crossover. The PCR diet induced weight loss and BMI decrease without malnutrition. Insulin sensitivity was improved after four days of PCR (p = 0.05). Between diet groups, there were similar rates of re-intervention, wound infection, and cardiovascular complications. Leukocyte populations were maintained after four days of PCR. (4) Conclusions: Pre-operative PCR is safe and feasible in elective vascular surgery patients.


2021 ◽  
pp. 1-7
Author(s):  
Benjamin W. Tero ◽  
Bethany Fortier ◽  
Ashley N. Soucy ◽  
Ginger Paquette ◽  
Lucy Liaw

Quantification of adipocyte size and number is routinely performed for white adipose tissues using existing image analysis software. However, thermogenic adipose tissue has multilocular adipocytes, making it difficult to distinguish adipocyte cell borders and to analyze lipid proportion using existing methods. We developed a simple, standardized method to quantify lipid content of mouse thermogenic adipose tissue. This method, using FIJI analysis of hematoxylin/eosin stained sections, was highly objective and highly reproducible, with ∼99% inter-rater reliability. The method was compared to direct lipid staining of adipose tissue, with comparable results. We used our method to analyze perivascular adipose tissue (PVAT) from C57BL/6 mice on a normal chow diet, compared to calorie restriction or a high fat diet, where lipid storage phenotypes are known. Results indicate that lipid content can be estimated within mouse PVAT in a quantitative and reproducible manner, and shows correlation with previously studied molecular and physiological measures.


2021 ◽  
pp. 105995
Author(s):  
Taylor R. Miron ◽  
Emma D. Flood ◽  
Nathan Tykocki ◽  
Janice M. Thompson ◽  
Stephanie W. Watts

Sign in / Sign up

Export Citation Format

Share Document