flexible walls
Recently Published Documents


TOTAL DOCUMENTS

91
(FIVE YEARS 17)

H-INDEX

11
(FIVE YEARS 2)

2021 ◽  
Author(s):  
Parisa Bazazi ◽  
Howard Stone ◽  
S. Hossein Hejazi

Abstract Printing structured networks of functionalized droplets in a liquid medium enables engineering collectives of living cells for functional purposes [1, 2], bacterial ecology [3], and promises enormous applications in processes ranging from energy storage [4, 5] to drug delivery [6, 7]and tissue engineering [8]. Current approaches are limited to drop-by-drop printing [1, 2] or face limitations in reproducing the sophisticated internal features of a structured material and its interactions with the surrounding media [6, 9–11]. Here, we report on a simple approach for creating stable liquid filaments of silica nanoparticle dispersions and use them as inks to print all-in-liquid materials that consist of a network of droplets. Silica nanoparticles stabilize liquid filaments at Weber numbers two orders of magnitude smaller than previously reported in liquid-liquid systems by rapidly producing a concentrated microemulsion zone at the oil-water interface. We experimentally demonstrate that the printed aqueous phase is emulsified in-situ; consequently, a 3D structure is achieved with flexible walls consisting of layered microemulsions. The tube-like printed features have a spongy texture resembling miniaturized versions of “tube sponges” found in the oceans. A scaling analysis based on the interplay between hydro-dynamics and emulsification kinetics reveals that liquid filaments are formed when emulsions are generated and remain at the interface during the printing period. We demonstrate the utilization of filaments of the nanoparticle dispersions for printing fluidic channels and propose to use them as lab-on-a-chip devices.


Author(s):  
Marianna A. Shubov ◽  
Madeline M. Edwards

In the present paper, we summarize the results of the research devoted to the problem of stability of the fluid flow moving in a channel with flexible walls and interacting with the walls. The walls of the vessel are subject to traveling waves. Experimental data show that the energy of the flowing fluid can be transferred and consumed by the structure (the walls), inducing “traveling wave flutter.” The problem of stability of fluid-structure interaction splits into two parts: (a) stability of fluid flow in the channel with harmonically moving walls and (b) stability of solid structure participating in the energy exchange with the flow. Stability of fluid flow, the main focus of the research, is obtained by solving the initial boundary value problem for the stream function. The main findings of the paper are the following: (i) rigorous formulation of the initial boundary problem for the stream function, ψ x , y , t , induced by the fluid-structure interaction model, which takes into account the axisymmetric pattern of the flow and “no-slip” condition near the channel walls; (ii) application of a double integral transformation (the Fourier transformation and Laplace transformation) to both the equation and boundary and initial conditions, which reduces the original partial differential equation to a parameter-dependent ordinary differential equation; (iii) derivation of the explicit formula for the Fourier transform of the stream function, ψ ˜ k , y , t ; (iv) evaluation of the inverse Fourier transform of ψ ˜ k , y , t and proving that reconstruction of ψ x , y , t can be obtained through a limiting process in the complex k -plane, which allows us to use the Residue theorem and represent the solution in the form of an infinite series of residues. The result of this research is an analytical solution describing blood flowing through a channel with flexible walls that are being perturbed in the form of a traveling wave.


2021 ◽  
pp. 155335062199997
Author(s):  
Graham M. Brant-Zawadzki ◽  
Patrick Ockerse ◽  
Justin R. Brunson ◽  
Jared L. Smith ◽  
Bryan R. McRae ◽  
...  

Background. Exposure to infectious droplets confers a high risk for infection transmission by the SARS-CoV-2 coronavirus. Aerosolizing procedures pose particular concern for increasing healthcare workers’ (HCWs) risks of infection. Multiple creative personal protective equipment solutions have been utilized to minimize exposure to infectious particles; however, the overall benefit of many of these devices is limited by a number of factors. Methods. We designed an intubation tent consisting of a metal frame and a clear plastic sheet. The flexible walls of our tent offer increased maneuverability & access, although the efficacy in reducing risk of transmission to HCWs remained unclear. Using an atomizer, particle generator, and matchstick smoke, we simulated the generation of infectious respiratory droplets and aerosols and tested whether our device effectively decreased the concentration of these particles to which a provider might be exposed. Finally, we tested whether the addition of a vacuum fan fit with a high efficiency particulate air filter designed to evacuate contaminated air would influence particle concentrations inside and outside the tent. Results. Droplet dispersion tests with the tent in place showed that the simulated droplet distribution was limited to surfaces within the tent. Aerosol testing under a variety of circumstances consistently showed only a minor rise in particle concentration in the air outside the tent despite an initial peak of particle concentration during generation within. All testing demonstrated declining inside concentrations over time. Conclusions. Our simulations suggest our device has the potential to effectively decrease HCWs’ exposure to infectious droplets and aerosolized viral particles.


2020 ◽  
Vol 486 ◽  
pp. 115615 ◽  
Author(s):  
Yang Liu ◽  
Jingtao Du ◽  
Li Cheng
Keyword(s):  

2020 ◽  
Vol 146 (11) ◽  
pp. 04020127
Author(s):  
Scott J. Brandenberg ◽  
Maria Giovanna Durante ◽  
George Mylonakis ◽  
Jonathan P. Stewart

Symmetry ◽  
2020 ◽  
Vol 12 (9) ◽  
pp. 1475
Author(s):  
Humaira Yasmin ◽  
Naveed Iqbal ◽  
Aiesha Hussain

The peristaltic flow of Johnson–Segalman fluid in a symmetric curved channel with convective conditions and flexible walls is addressed in this article. The channel walls are considered to be compliant. The main objective of this article is to discuss the effects of curvilinear of the channel and heat/mass convection through boundary conditions. The constitutive equations for Johnson–Segalman fluid are modeled and analyzed under lubrication approach. The stream function, temperature, and concentration profiles are derived. The analytical solutions are obtained by using regular perturbation method for significant number, named as Weissenberg number. The influence of the parameter values on the physical level of interest is outlined and discussed. Comparison is made between Jhonson-Segalman and Newtonian fluid. It is concluded that the axial velocity of Jhonson-Segalman fluid is substantially higher than that of Newtonian fluid.


2020 ◽  
Vol 20 (3) ◽  
pp. 104-114
Author(s):  
Dominik Šedivý ◽  
Simona Fialová ◽  
Roman Klas ◽  
Michal Kotek

AbstractPresented paper is focused on the experimental and computational study of fluid flow in pipes with flexible walls. One possible real example of this phenomenon is the blood flow in arteries or their substitutes in the human body. The artery material itself should be understood as anisotropic and heterogeneous. Therefore, the experiment was carried out on the deforming tube, made of silicone (polydimethylsiloxane - PDMS). Obtained results and observed events were verified by numerical FSI simulations. Due to the large deformations occurring during loading of the tube, it was necessary to work with a dynamic mesh in the CFD part. Based on experimental testing of the tube material, a non-Hookean and Mooney-Rivlin material model were considered. Blood flowing in vessels is a heterogeneous liquid and exhibits non-Newtonian properties. In the real experimental stand has been somewhat simplified. Water, chosen as the liquid, belongs to the Newtonian liquids. The results show mainly comparisons of unsteady velocity profiles between the experiment and the numerical model.


Author(s):  
Christos Manopoulos ◽  
Sokrates Tsangaris ◽  
Dimitrios Mathioulakis

Net flow generation in valveless pumping, met in many physiological applications and recently in micropumping devices, constitutes an open fluid dynamics issue due to the complex interaction between the fluid medium and the flexible walls of the pump. In the context of the present experimental work, the conditions of the net flow generation are examined in a closed-loop horizontal valveless pump, which consists of a rigid and an elastic tube of equal diameters and lengths, and a pincher that forces the liquid within the tube to oscillate at Reynolds and Womersley numbers up to 7800 and 48, respectively. Pinching off as well as at the mid-length of the pump flexible tube, net flow is generated at certain pinching frequencies for which details are presented based on simultaneous recording of the pressure at the two tube junctions, the flow rate and the displacement of the pincher. Pinching off the mid-length of the pump at low pinching frequencies, net flow rate is practically null due to the almost identical pressure waveforms at the tube junctions, which vary in phase with the pincher motion. However, close to the first natural frequency of the hydraulic loop, the reflection of the pressure waves at the tube junctions combined with their increased phase difference cause high axial pressure gradients, which when they increase simultaneously with the squeezing of the tube, net flow rate maximization occurs. Pinching at the flexible tube mid-length area, nonzero net flow rates can also be generated, the sign of which changes when the pincher mid-point crosses the tube mid-length without being nullified.


Sign in / Sign up

Export Citation Format

Share Document