mesenchymal stromal cell
Recently Published Documents


TOTAL DOCUMENTS

1083
(FIVE YEARS 406)

H-INDEX

62
(FIVE YEARS 19)

2022 ◽  
Vol 70 (2) ◽  
pp. 103324
Author(s):  
Amin Ranjbar ◽  
Halimeh Hassanzadeh ◽  
Faezeh Jahandoust ◽  
Raheleh Miri ◽  
Hamid Reza Bidkhori ◽  
...  

Animals ◽  
2022 ◽  
Vol 12 (2) ◽  
pp. 189
Author(s):  
Alina Hagen ◽  
Heidrun Holland ◽  
Vivian-Pascal Brandt ◽  
Carla U. Doll ◽  
Thomas C. Häußler ◽  
...  

Platelet lysate (PL) is an attractive platelet-based therapeutic tool and has shown promise as xeno-free replacement for fetal bovine serum (FBS) in human and equine mesenchymal stromal cell (MSC) culture. Here, we established a scalable buffy-coat-based protocol for canine PL (cPL) production (n = 12). The cPL was tested in canine adipose MSC (n = 5) culture compared to FBS. For further comparison, equine adipose MSC (n = 5) were cultured with analogous equine PL (ePL) or FBS. During canine blood processing, platelet and transforming growth factor-β1 concentrations increased (p < 0.05 and p < 0.001), while white blood cell concentrations decreased (p < 0.05). However, while equine MSC showed good results when cultured with 10% ePL, canine MSC cultured with 2.5% or 10% cPL changed their morphology and showed decreased metabolic activity (p < 0.05). Apoptosis and necrosis in canine MSC were increased with 2.5% cPL (p < 0.05). Surprisingly, passage 5 canine MSC showed less genetic aberrations after culture with 10% cPL than with FBS. Our data reveal that using analogous canine and equine biologicals does not entail the same results. The buffy-coat-based cPL was not adequate for canine MSC culture, but may still be useful for therapeutic applications.


2022 ◽  
Vol 13 (1) ◽  
Author(s):  
Xiao-Na Xiang ◽  
Si-Yi Zhu ◽  
Hong-Chen He ◽  
Xi Yu ◽  
Yang Xu ◽  
...  

AbstractOsteoarthritis, as a degenerative disease, is a common problem and results in high socioeconomic costs and rates of disability. The most commonly affected joint is the knee and characterized by progressive destruction of articular cartilage, loss of extracellular matrix, and progressive inflammation. Mesenchymal stromal cell (MSC)-based therapy has been explored as a new regenerative treatment for knee osteoarthritis in recent years. However, the detailed functions of MSC-based therapy and related mechanism, especially of cartilage regeneration, have not been explained. Hence, this review summarized how to choose, authenticate, and culture different origins of MSCs and derived exosomes. Moreover, clinical application and the latest mechanistical findings of MSC-based therapy in cartilage regeneration were also demonstrated.


Author(s):  
Cristobal Lopez-Jimenez ◽  
Sarah I.M. Lepage ◽  
Loraine L.Y. Chiu ◽  
Stephen D. Waldman ◽  
Matthew Vickaryous ◽  
...  

Author(s):  
Alison Nicole Abele ◽  
Elizabeth S Taglauer ◽  
Maricar Almeda ◽  
Noah Wilson ◽  
Abigail Abikoye ◽  
...  

Background: Antenatal stressors such as chorioamnionitis (CA) increase the risk for bronchopulmonary dysplasia (BPD). Studies have shown that experimental BPD can be ameliorated by postnatal treatment with mesenchymal stromal cell-derived extracellular vesicles (MEx). However, the antenatal efficacy of MEx to prevent BPD is unknown. Objective: To determine whether antenatal MEx therapy attenuates intrauterine inflammation and preserves lung growth in a rat model of CA-induced BPD. Methods: At embryonic day (E)20, rat litters were treated with intra-amniotic injections of saline, endotoxin (ETX) to model chorioamnionitis, MEx, or ETX plus MEx followed by cesarean section delivery with placental harvest at E22. Placental and lung evaluations were conducted at day 0 and day 14, respectively. To assess the effects of ETX and MEx on lung growth in vitro, E15 lung explants were imaged for distal branching. Results: Placental tissues from ETX-exposed pregnancies showed increased expression of inflammatory markers NLRP-3 and IL-1ß and altered spiral artery morphology. Additionally, infant rats exposed to intrauterine ETX had reduced alveolarization and pulmonary vessel density (PVD), increased right ventricular hypertrophy (RVH), and decreased lung mechanics. Intrauterine MEx therapy of ETX-exposed pups reduced inflammatory cytokines, normalized spiral artery architecture, and preserved distal lung growth and mechanics. In vitro studies showed that MEx treatment enhanced distal lung branching and increased VEGF and SPC gene expression. Conclusions: Antenatal MEx treatment preserved distal lung growth and reduced intrauterine inflammation in a model of CA-induced BPD. We speculate that MEx may provide a novel therapeutic strategy to prevent BPD due to antenatal inflammation.


Cancers ◽  
2021 ◽  
Vol 13 (24) ◽  
pp. 6173
Author(s):  
Uğur Çakır ◽  
Anna Hajdara ◽  
Balázs Széky ◽  
Balázs Mayer ◽  
Sarolta Kárpáti ◽  
...  

Melanoma-associated fibroblasts (MAFs) are integral parts of melanoma, providing a protective network for melanoma cells. The phenotypical and functional similarities between MAFs and mesenchymal stromal cells (MSCs) prompted us to investigate if, similarly to MSCs, MAFs are capable of modulating macrophage functions. Using immunohistochemistry, we showed that MAFs and macrophages are in intimate contact within the tumor stroma. We then demonstrated that MAFs indeed are potent inducers of IL-10 production in various macrophage types in vitro, and this process is greatly augmented by the presence of treatment-naïve and chemotherapy-treated melanoma cells. MAFs derived from thick melanomas appear to be more immunosuppressive than those cultured from thin melanomas. The IL-10 increasing effect is mediated, at least in part, by cyclooxygenase and indoleamine 2,3-dioxygenase. Our data indicate that MAF-induced IL-10 production in macrophages may contribute to melanoma aggressiveness, and targeting the cyclooxygenase and indoleamine 2,3-dioxygenase pathways may abolish MAF–macrophage interactions.


Sign in / Sign up

Export Citation Format

Share Document