subharmonic functions
Recently Published Documents


TOTAL DOCUMENTS

546
(FIVE YEARS 49)

H-INDEX

19
(FIVE YEARS 1)

Author(s):  
B.I. Abdullaev ◽  
S.A. Imomkulov ◽  
R.A. Sharipov

In this paper, we survey the recent results on removable singular sets for the classes of $m$-subharmonic ($m-sh$) and strongly $m$-subharmonic ($sh_m$), as well as $\alpha$-subharmonic functions, which are applied to study the singular sets of $sh_{m}$ functions. In particular, for strongly $m$-subharmonic functions from the class $L_{loc}^{p}$, it is proved that a set is a removable singular set if it has zero $C_{q,s}$-capacity. The proof of this statement is based on the fact that the space of basic functions, supported on the set $D\backslash E$, is dense in the space of test functions defined in the set $D$ on the $L_{q}^{s}$-norm. Similar results in the case of classical (sub)harmonic functions were studied in the works by L. Carleson, E. Dolzhenko, M. Blanchet, S. Gardiner, J. Riihentaus, V. Shapiro, A. Sadullaev and Zh. Yarmetov, B. Abdullaev and S. Imomkulov.


2021 ◽  
Vol 359 (6) ◽  
pp. 757-762
Author(s):  
Sergey A. Denisov

Sign in / Sign up

Export Citation Format

Share Document