dead sea transform
Recently Published Documents


TOTAL DOCUMENTS

181
(FIVE YEARS 29)

H-INDEX

34
(FIVE YEARS 3)

Author(s):  
Lev V. Eppelbaum ◽  
Youri Katz

The origin of the man at the Earth is directly associated with the determination of directions of the flow distribution of the ancient man migration to adjacent territories. In such studies traditionally mainly landscape and climatological changes are considered. We suggest that along with the above factors, regional tectonic-geodynamic factors played a dominant role in the character of migration. The considered African-Levantine-Caucasian region is one of the most complex regions of the world, where collisional and spreading processes of geodynamics converge. First is determined an essential influence of the Akchagylian hydrospheric maximum (about 200 m above the mean sea level) limiting the ancient men migration from Africa to Eurasia. We propose that the Levantine Corridor emerged after the end of the Akchagylian transgression and landscape forming in the Eastern Mediterranean. This corridor location was formed by the movements between the Dead Sea Transform and the boundary of the carbonate platform of the Mesozoic Terrane Belt. Further landscape evolution was largely determined by the geodynamic behavior of the deep mantle rotating structure occurring below the central part of the region under study. All the mentioned events around and in the Levantine Corridor have been studied in detail on the basis of the combined geodynamic, paleogeographic, and paleomagnetic analyzes performed in northern Israel (Carmel uplift and Galilee plateau). Careful studies of the Evron quarry geological section indicate that it is a unique one for the dating of the marine and continental archaeological sequences and sheds light on the movement of the ancient man along the Levantine Corridor.


2021 ◽  
pp. 1-25
Author(s):  
Amit Segev ◽  
Itay J. Reznik ◽  
Uri Schattner

Abstract The Yarmouk River gorge extends along the Israel–Jordan–Syria border junction. It marks the southern bound of the Irbid–Azraq rift and Harrat Ash Shaam volcanic field at their intersection with the younger Dead Sea Transform plate boundary. During the last ∼13 Ma, the gorge has repeatedly accumulated basaltic units, chronologically named the Lower, Cover, Yarmouk and Raqqad Basalt formations. We examined their origin and distribution through aerial photos, and geological and geophysical evidence. Our results define a southern Golan magmatic province, which includes exposed Miocene (∼13 Ma) basalts, gabbro–diabase intrusions below the gorge and the adjacent Dead Sea Transform valley, and numerous Pliocene–Pleistocene volcanic sources along the gorge. Cover Basalt (∼5.0–4.3 Ma) eruptions formed two adjacent 0–100 m thick plateaus on the transform shoulder before flowing downslope to fill the topographically lower Dead Sea Transform valley with ∼700 m thick basalts. Later incision of the Yarmouk River and displacement along its associated fault divided the plateaus and formed the gorge. The younger Yarmouk (0.8–0.6 Ma) and Raqqad (0.2–0.1 Ma) basalts erupted in the upper part of the gorge from volcanos reported here, and flowed downstream toward the Dead Sea Transform valley. Consequently, eruptions from six phreatic volcanic vents altered the Yarmouk River morphology from sinuous to meandering. Our results associate the ∼13 Ma long southern Golan volcanism with the proposed SW-trending extensional Yarmouk Fault, located east of the Dead Sea Transform. Hence, the Yarmouk volcanism is associated with the ongoing Harrat Ash Shaam activity, which is not directly linked to the displacement along the Dead Sea Transform.


Author(s):  
O. Chaldekas ◽  
A. Vaks ◽  
I. Haviv ◽  
A. Gerdes ◽  
R. Albert

The timing of vertical motions adjacent to the Dead Sea Transform plate boundary is not yet firmly established. We utilize laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS) U-Pb geochronology of carbonate cave deposits (speleothems) to constrain paleo-groundwater levels along the western margin of the Dead Sea Transform and provide a proxy for the timing of large-scale incision and tectonic uplift. Phreatic speleothems can form in caves that are located slightly below the groundwater level. Tectonic uplift and/or base level subsidence can trigger incision of canyons and induce a drop in the groundwater table. This can cause dewatering of the caves, cessation of the deposition of phreatic speleothems, and initiation of growth of vadose speleothems. The transition between deposition of phreatic and vadose speleothems can therefore reflect tectonic or erosive events. We obtained 102 U-Pb ages from 32 speleothems collected from three cave complexes across a 150-km-long, north-to-south transect. These ages indicate that phreatic deposition began between 14.68 ± 1.33 and 11.34 ± 1.62and ended by 6.21 ± 0.59 Ma. Later, vadose speleothems grew intermittently until the Quaternary. These results suggest an abrupt drop in the water table starting at ca. 6 Ma with no re-submergence of the caves. We interpret this to indicate river incision of ∼150−200 m that was driven by uplift and folding of the western margin of the Dead Sea Transform and by inland morpho-tectonic, base-level subsidence in the Dead Sea area. The observed timing corresponds with a change in the Euler pole of the plates motion along the Dead Sea Transform. The growth period of phreatic speleothems suggests groundwater level stability and limited vertical tectonic motions between 14 Ma and 6 Ma.


Minerals ◽  
2021 ◽  
Vol 11 (10) ◽  
pp. 1062
Author(s):  
Łukasz Kruszewski ◽  
Vyacheslav Palchik ◽  
Yevgeny Vapnik ◽  
Katarzyna Nowak ◽  
Kamila Banasik ◽  
...  

The Hatrurim Basin, Israel, is located on the western border of the Dead Sea Transform. This is one of the localities of a unique pyrometamorphic complex whose genesis remains problematic. This paper deals with zeolite-bearing rock that is known in the Hatrurim Basin only. The strata subjected to zeolitization is called the “olive unit” and consists of anorthite–pyroxene (diopside–esseneite) hornfels. Zeolitization occurred in an alkaline environment provided by the interaction of meteoric water with Portland-cement-like rocks of the Hatrurim Complex. The resulting zeolite-bearing rocks contain 20–30% zeolitic material. The main zeolitic minerals are calcic: thomsonite-Ca ± Sr, phillipsite-Ca, gismondine-Ca, and clinoptilolite-Ca. The remainder is calcite, diopsidic pyroxene, garnets (either Ti-andradite and/or hydrogrossular), and less frequently, fluorapatite, opal, and others. Their major mineralogical and chemical compositions resemble carbonated zeolite-blended Portland mortar. Rocks show different values of porosity. Their mechanical characteristics are much better for samples with porosity values below 24%. The related parameters are like those of blended concretes. The minimal age of zeolitization is 5 Ka. The natural zeolite-bearing rocks are resistant to weathering in the Levant desert climate.


2021 ◽  
Vol 148 ◽  
pp. 106835
Author(s):  
Mahmoud Elhadidy ◽  
Mohamed S. Abdalzaher ◽  
Hanan Gaber

Author(s):  
Nicolás Castro-Perdomo ◽  
Renier Viltres ◽  
Frédéric Masson ◽  
Yann Klinger ◽  
Shaozhuo Liu ◽  
...  

Summary Although the Dead Sea Transform fault system has been extensively studied in the past, little has been known about the present-day kinematics of its southernmost portion that is offshore in the Gulf of Aqaba. Here we present a new GPS velocity field based on three surveys conducted between 2015 and 2019 at 30 campaign sites, complemented by 11 permanent stations operating near the gulf coast. Interseismic models of strain accumulation indicate a slip rate of $4.9^{+0.9}_{-0.6}~mm/yr$ and a locking depth of $6.8^{+3.5}_{-3.1}~km$ in the gulf’s northern region. Our results further indicate an apparent reduction of the locking depth from the inland portion of the Dead Sea Transform towards its southern junction with the Red Sea rift. Our modelling results reveal a small systematic left-lateral residual motion that we postulate is caused by, at least in part, late postseismic transient motion from the 1995 MW7.2 Nuweiba earthquake. Estimates of the moment accumulation rate on the main faults in the gulf, other than the one that ruptured in 1995, suggest that they might be near the end of their current interseismic period, implying elevated seismic hazard in the gulf area.


2021 ◽  
Author(s):  
O. Chaldekas ◽  
A. Vaks ◽  
et al.

Description of the study sites, Research Methods, U-Th analytical results and Supplemental Figures (Word Document). Dataset 1: Initial 234U/238U activity ratios of Israeli speleothems. Dataset 2: Raw U-Pb geochronological data.


2021 ◽  
Author(s):  
O. Chaldekas ◽  
A. Vaks ◽  
et al.

Description of the study sites, Research Methods, U-Th analytical results and Supplemental Figures (Word Document). Dataset 1: Initial 234U/238U activity ratios of Israeli speleothems. Dataset 2: Raw U-Pb geochronological data.


Author(s):  
John P. Craddock ◽  
Perach Nuriel ◽  
Andrew R.C. Kylander-Clark ◽  
Bradley R. Hacker ◽  
John Luczaj ◽  
...  

The onset of the Dead Sea transform has recently been reevaluated by U-Pb age-strain analyses of fault-related calcite taken from several fault strands along its main 500-km-long sector. The results suggest that the relative motion between Africa and Arabia north of the Red Sea was transferred northward to the Dead Sea transform as early as 20 Ma and along a ∼10-km-wide deformation zone that formed the central rift with contemporaneous bounding sinistral motion. The Gishron fault is the western bounding fault with normal and sinistral fault offsets that placed Proterozoic crystalline rocks and a cover of Cambrian sandstones in fault contact with Cretaceous-Eocene carbonates. Fault-related calcite veins are common in the Gishron fault zone, and we report the results of a detailed study of one sample with nine calcite fillings. Low fluid inclusion entrapment temperatures <50 °C, stable isotopes values of −3.3−0‰ (δ13C) and −15 to −13‰ (δ18O), and low rare earth element (REE) concentrations within the nine calcite fault fillings indicate that a local, meteoric fluid fed the Gishron fault zone over ca. 7 Ma at depths of <2 km. Laser ablation U-Pb ages within the thin section range from 20.37 Ma to 12.89 Ma and allow a detailed fault-filling chronology with the oldest calcite filling in the middle, younging outward with shearing between the oldest eight zones, all of which are finally crosscut by a perpendicular (E-W) vein. All nine calcite fillings have unique mechanical twinning strain results (n = 303 grains). Shortening strain magnitudes (−0.28% to −2.8%) and differential stresses (−339 bars to −415 bars) vary across the sample, as do the orientations of the shortening (ε1) and extension (ε3) axes with no evidence of any twinning strain overprint (low negative expected values). Overall, the tectonic compression and shortening is sub-horizontal and sub-parallel to the Gishron fault (∼N-S) and Dead Sea transform plate boundary. Most strikingly, the 7 m.y. period of vein growth correlates exactly with the timing of fault activity as evident within the 10-km-wide deformation zone in this evolving plate boundary (between 20 Ma and 13 Ma).


Sign in / Sign up

Export Citation Format

Share Document