rietveld refinements
Recently Published Documents


TOTAL DOCUMENTS

205
(FIVE YEARS 42)

H-INDEX

28
(FIVE YEARS 2)

Minerals ◽  
2021 ◽  
Vol 12 (1) ◽  
pp. 42
Author(s):  
Darren A. Umbsaar ◽  
Sytle M. Antao

The crystal structure of four samples from natural wolframite solid solutions, (Fe,Mn)WO4, was obtained with synchrotron high-resolution powder X-ray diffraction (HRPXRD) data, Rietveld refinements, space group P2/c, and Z = 2. Wolframite solid solutions extend from ferberite (FeWO4) to hübnerite (MnWO4). The W and (Mn,Fe) cations are in six-fold coordination. This study shows that the unit-cell parameters, a, b, c, and β angle, vary linearly with the unit-cell volume, V, across the wolframite series. The average <Mn,Fe–O> distance increases linearly because of larger Mn2+ (0.83 Å) replacing smaller Fe2+ (0.78 Å) cations, whereas the average <W–O> distance increases slightly because of the higher effective charge of the smaller Fe2+ cation. The distortions of the two types of polyhedra across the series are discussed.


2021 ◽  
pp. 1-9
Author(s):  
Anthony M. T. Bell ◽  
Alex H. Stone

Leucites are tetrahedrally coordinated silicate framework structures with some of the silicon framework cations partially replaced by divalent or trivalent cations. These structures have general formulae A2BSi5O12 and ACSi2O6; where A is a monovalent alkali metal cation, B is a divalent cation, and C is a trivalent cation. In this paper, we report the Rietveld refinements of three more synthetic leucite analogues with stoichiometries of Cs2NiSi5O12, RbGaSi2O6, and CsGaSi2O6. Cs2NiSi5O12 is Ia $\bar{3}$ d cubic and is isostructural with Cs2CuSi5O12. RbGaSi2O6 is I41/a tetragonal and is isostructural with KGaSi2O6. CsGaSi2O6 is $I\bar{4}3d$ cubic and is isostructural with RbBSi2O6.


2021 ◽  
Vol 11 (18) ◽  
pp. 8349
Author(s):  
Kazutaka Ikeda ◽  
Fumika Fujisaki ◽  
Toshiya Otomo ◽  
Hidetoshi Ohshita ◽  
Takashi Honda ◽  
...  

The hydrogen desorption and absorption reactions of the complex metal hydride NaAlH4 are disproportionation processes, and the kinetics can be improved by adding a few mol% of Ti compounds, although the catalytic mechanism, including the location and state of Ti, remains unknown. In this study, we aimed to reveal the generating mechanism of catalytic Al–Ti alloy in NaAlH4 with TiCl3 using quantum multiprobe techniques such as neutron diffraction (ND), synchrotron X-ray diffraction (XRD), anomalous X-ray scattering (AXS), and X-ray absorption fine structure (XAFS). Rietveld refinements of the ND and XRD, profiles before the first desorption of NaAlD(H)4–0.02TiCl3 showed that Al in NaAlD(H)4 was partially substituted by Ti. On the other hand, Ti was not present in NaAlH4, and Al–Ti nanoparticles were detected in the XRD profile after the first re-absorption. This was consistent with the AXS and XAFS results. It is suggested that the substitution promotes the formation of a highly dispersed nanosized Al–Ti alloy during the first desorption process and that the effectiveness of TiCl3 as an additive can be attributed to the dispersion of Ti.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Eva M. Heppke ◽  
Shamini Mahadevan ◽  
Thomas Bredow ◽  
Martin Lerch

Abstract Ag2FeGeS4 was synthesized as a phase-pure and highly crystalline product by mechanochemical milling from the binary sulfides and iron metal, followed by annealing in H2S atmosphere. The structure evaluation was carried out using X-ray powder diffraction with subsequent Rietveld refinements. As Fe and Ge atoms are not distinguishable using conventional X-ray methods, the chalcopyrite-type structure (space group I 4 ‾ 2 d $I&#x203e;{4}2d$ ), exhibiting a statistical distribution of Fe and Ge on Wyckoff position 4b, was considered. However, quantum-chemical calculations at hybrid density-functional level indicate that mechanochemically prepared Ag2FeGeS4 crystallizes in the kesterite-type structure (space group I 4 ‾ $I&#x203e;{4}$ ) where the cations are arranged in an ordered way. Ag2FeGeS4 is a further example of a mechanochemically prepared compound differing structurally from the commonly known polymorph exhibiting the stannite type (solid-state route).


2021 ◽  
Vol 54 (4) ◽  
Author(s):  
Neeraj K. Rajak ◽  
Arya Mohan ◽  
Deepshikha Jaiswal-Nagar

The Rietveld refinement technique has been used to determine the extent of intergrowth of the Bi2Sr2CuO6+x phase and co-crystallization of competing phases in the high-temperature superconductor Bi2Sr2CaCu2O8+x (Bi-2212). The refinement was done on powder diffractograms obtained on powders made by grinding single crystals of Bi2Sr2CaCu2O8+x grown using two different self-flux techniques, namely the pressure technique and the regrowth technique, and ground for either 2 min or 2 h. The Rietveld programs JANA and FULLPROF were used for the refinement and both gave consistent results. The Bi and Sr atom positions were refined in the average structure of centrosymmetric space group Bbmb. To incorporate Bi-atom modulation and extract information about the modulation vector, refinement was done in the centrosymmetric space group N^{Bbmb}_{1\overline 11}(Bbmb(0γ1)). The b* component of the modulation vector decreases with a decrease in the superconducting transition temperature in the pressure-technique sample compared with the regrowth sample, suggesting a better alignment of the CuO2 planes with respect to the Bi–O planes in the pressure-technique sample. All the samples exhibit a strong preferred orientation effect. Values of the March–Dollase parameters corresponding to the preferred orientation function were obtained. Brindley absorption contrast factors t ϕ were also calculated, together with the effect of microabsorption on the number of phases present in each sample. Rietveld refinements incorporating all the factors resulted in excellent values for the goodness-of-fit parameters for all the samples, with the lowest value of 2.08 for the pressure-technique sample ground for 2 min. Additionally, the powders corresponding to the pressure-technique crystals have no co-crystallizing phase and ∼94% of the Bi-2212 phase, suggesting that crystals grown by the pressure technique are of extremely good quality, much better than those grown by the regrowth flux technique.


2021 ◽  
Vol 2021 ◽  
pp. 1-7
Author(s):  
K. A. Chebyshev ◽  
A. V. Ignatov ◽  
L. V. Pasechnik ◽  
N. I. Selikova ◽  
E. I. Get`man

This paper presents the investigation of the heterovalent substitution of cadmium for lanthanum in the La2-xCdxMoO6-x/2 system. The samples were synthesized by the solid state reaction method at 1000°C. The samples were characterized by X-ray powder diffraction with Rietveld refinements, scanning electron microscopy with energy-dispersive X-ray spectroscopy, and Fourier transform infrared spectroscopy methods. The study results revealed that cadmium incorporation in the lanthanum molybdate leads to the transformation of the tetragonal structure of La2MoO6 to a cubic fluorite-like one. The content of the cubic phase reaches 94% in the Lа1.4Cd0.6MoO5.7 sample. The unit cell parameter of fluorite-like-phase decreases with cadmium content rising. The preferred location of cadmium ions in the cubic structure was established by the Rietveld refinement method. The heterovalent substitution cadmium for lanthanide in tetragonal La2MoO6 molybdate leads to the cubic fluorite phase stabilization in a similar way as it occurs in the process of reduction.


2021 ◽  
Author(s):  
Marvin Kraft ◽  
Lara Gronych ◽  
Theodosios Famprikis ◽  
Wolfgang Zeier

<p>Exploration of sulfidic sodium solid electrolytes and their design contributes to advances in solid state sodium batteries. Such design is guided by a better understanding of fast sodium transport, for instance in the herein studied Na<sub>11</sub>Sn<sub>2</sub>PS<sub>12</sub>-type materials. By using Rietveld refinements against synchrotron X-ray diffraction and electrochemical impedance spectroscopy, the influence of aliovalent substitution onto the structure and transport in Na<sub>11+<i>x</i></sub>Sn<sub>2</sub>P<sub>1−<i>x</i></sub><i>M<sub>x</sub></i>S<sub>12</sub> with <i>M</i> = Ge and Sn is investigated. Whereas Sn induces stronger structural changes than Ge, the found influence on the sodium sublattice and the ionic transport properties are comparable. Overall, a reduced in-grain activation energy of Na<sup>+</sup> transport can be found with the reducing Na<sup>+</sup> vacancy concentration. This work explores previously unreported phases in the Na<sub>11</sub>Sn<sub>2</sub>PS<sub>12</sub> structure type that, based on their determined properties reveal Na<sup>+</sup> vacancy concentrations to be an important factor guiding further understanding within Na<sub>11</sub>Sn<sub>2</sub>PS<sub>12</sub>-type materials.</p>


2021 ◽  
Author(s):  
Marvin Kraft ◽  
Lara Gronych ◽  
Theodosios Famprikis ◽  
Wolfgang Zeier

<p>Exploration of sulfidic sodium solid electrolytes and their design contributes to advances in solid state sodium batteries. Such design is guided by a better understanding of fast sodium transport, for instance in the herein studied Na<sub>11</sub>Sn<sub>2</sub>PS<sub>12</sub>-type materials. By using Rietveld refinements against synchrotron X-ray diffraction and electrochemical impedance spectroscopy, the influence of aliovalent substitution onto the structure and transport in Na<sub>11+<i>x</i></sub>Sn<sub>2</sub>P<sub>1−<i>x</i></sub><i>M<sub>x</sub></i>S<sub>12</sub> with <i>M</i> = Ge and Sn is investigated. Whereas Sn induces stronger structural changes than Ge, the found influence on the sodium sublattice and the ionic transport properties are comparable. Overall, a reduced in-grain activation energy of Na<sup>+</sup> transport can be found with the reducing Na<sup>+</sup> vacancy concentration. This work explores previously unreported phases in the Na<sub>11</sub>Sn<sub>2</sub>PS<sub>12</sub> structure type that, based on their determined properties reveal Na<sup>+</sup> vacancy concentrations to be an important factor guiding further understanding within Na<sub>11</sub>Sn<sub>2</sub>PS<sub>12</sub>-type materials.</p>


2021 ◽  
Vol 9 (1A) ◽  
Author(s):  
Vanessa Sanches Pereira da Silva ◽  
José Roberto Ferreira Neto ◽  
Silvia Lucas Ferreira da Silva ◽  
Diogo Costa de Oliveira ◽  
Fábio De Camargo


Minerals ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 392
Author(s):  
Maria Lacalamita ◽  
Gennaro Ventruti ◽  
Giancarlo Della Ventura ◽  
Francesco Radica ◽  
Daniela Mauro ◽  
...  

The thermal behavior of melanterite from the Fornovolasco mine (Tuscany, Italy) has been investigated via differential thermal analysis (DTA), thermogravimetry (TG), in situ high-temperature X-ray powder diffraction (XRPD) and Fourier-transform infrared spectroscopy (FTIR). The DTA curve showed endothermic peaks at 70, 100, 260, 500–560 and 660 °C whereas the TG curve evidenced a total mass decrease of ~68%, in keeping with the loss of all H2O and SO4 groups. Rietveld refinements were performed for all the collected patterns in the 25–775 °C range and converged at 1.57 ≤ R (%) ≤ 2.75 and 1.98 ≤ Rwp (%) ≤ 3.74. The decomposition steps FeSO4·7H2O → FeSO4·4H2O (25 ≤ T ≤ 50 °C) → FeSO4·H2O (50 < T ≤ 100 °C) → FeOHSO4 (75 < T ≤ 200 °C) → Fe2(SO4)3 (400 < T ≤ 500 °C) → Fe2O3 (500 < T ≤ 775 °C) were obtained. The high-temperature infrared analysis confirmed that melanterite undergoes a three-step dehydration in the 25–300 °C temperature range. The FeOHSO4 phase is stable over a wide range of temperature and transforms partially to Fe2(SO4)3 without the formation of Fe2O(SO4)2. The findings highlight a different behavior of the studied sample with respect to the synthetic salt.


Sign in / Sign up

Export Citation Format

Share Document