reproductive events
Recently Published Documents


TOTAL DOCUMENTS

252
(FIVE YEARS 71)

H-INDEX

34
(FIVE YEARS 5)

Author(s):  
Yuewen Zhao ◽  
Sydney Vanderkooi ◽  
Frederick W. K. Kan

AbstractDiverse lines of evidence indicate that the mammalian oviduct makes important contributions to the complex process of reproduction other than being simply a conduit for the transport of gametes and embryos. The cumulative synthesis and transport of proteins secreted by oviductal secretory cells into the oviductal lumen create a microenvironment supporting important reproductive events, including sperm capacitation, fertilization, and early embryo development. Among the components that have been identified in the oviductal fluid is a family of glycosylated proteins known collectively as oviduct-specific glycoprotein (OVGP1) or oviductin. OVGP1 has been identified in several mammalian species, including humans. The present review summarizes the work carried out, in various mammalian species, by many research groups revealing the synthesis and secretion of OVGP1, its fate in the female reproductive tract upon secretion by the oviductal epithelium, and its role in modulating biological functions of gametes and embryos. The production and functions of recombinant human OVGP1 and recombinant OVGP1 of other mammalian species are also discussed. Some of the findings obtained with immunocytochemistry will be highlighted in the present review. It is hoped that the findings obtained from recent studies carried out with recombinant OVGP1 from various species will rekindle researchers’ interest in pursuing further the role of the oviductal microenvironment, of which OVGP1 is a major component, in contributing to the successful occurrence of early reproductive events, and the potential use of OVGP1 in improving the current assisted reproductive technology in alleviating infertility.


Life ◽  
2021 ◽  
Vol 12 (1) ◽  
pp. 10
Author(s):  
Pallav Sengupta ◽  
Sulagna Dutta ◽  
Ivan Rolland Karkada ◽  
Suresh V. Chinni

Male infertility is approaching a concerning prevalence worldwide, and inflicts various impacts on the affected couple. The hormonal assessment is a vital component of male fertility evaluation as endocrine disorders are markedly reversible causatives of male infertility. Precise hormonal regulations are prerequisites to maintain normal male fertility parameters. The core male reproductive event, spermatogenesis, entails adequate testosterone concentration, which is produced via steroidogenesis in the Leydig cells. Physiological levels of both the gonadotropins are needed to achieve normal testicular functions. The hypothalamus-derived gonadotropin-releasing hormone (GnRH) is considered the supreme inducer of the gonadotropins and thereby the subsequent endocrine reproductive events. This hypothalamic–pituitary–gonadal (HPG) axis may be modulated by the thyroidal or adrenal axis and numerous other reproductive and nonreproductive hormones. Disruption of this fine hormonal balance and their crosstalk leads to a spectrum of endocrinopathies, inducing subfertility or infertility in men. This review article will discuss the most essential endocrinopathies associated with male factor infertility to aid precise understanding of the endocrine disruptions-mediated male infertility to encourage further research to reveal the detailed etiology of male infertility and perhaps to develop more customized therapies for endocrinopathy-induced male infertility.


2021 ◽  
Vol 23 (1) ◽  
pp. 2
Author(s):  
Minli Wei ◽  
Jia Li ◽  
Huili Yan ◽  
Tao Luo ◽  
Jiang Huang ◽  
...  

Post-translational modifications (PTMs) have been confirmed to be involved in multiple female reproductive events, but their role in physiological ovarian aging is far from elucidated. In this study, mice aged 3, 12 or 17 months (3M, 12M, 17M) were selected as physiological ovarian aging models. The expression of female reproductive function-related genes, the global profiles of PTMs, and the level of histone modifications and related regulatory enzymes were examined during physiological ovarian aging in the mice by quantitative real-time PCR and western blot, respectively. The results showed that the global protein expression of Kbhb (lysineβ-hydroxybutyryllysine), Khib (lysine 2-hydroxyisobutyryllysine), Kglu (lysineglutaryllysine), Kmal (lysinemalonyllysine), Ksucc (lysinesuccinyllysine), Kcr (lysinecrotonyllysine), Kbu (lysinebutyryllysine), Kpr (lysinepropionyllysine), SUMO1 (SUMO1 modification), ub (ubiquitination), P-Typ (phosphorylation), and 3-nitro-Tyr (nitro-tyrosine) increased significantly as mice aged. Moreover, the modification level of Kme2 (lysinedi-methyllysine) and Kac (lysineacetyllysine) was the highest in the 3M mice and the lowest in 12M mice. In addition, only trimethylation of histone lysine was up-regulated progressively and significantly with increasing age (p < 0.001), H4 ubiquitination was obviously higher in the 12M and 17M mice than 3M (p < 0.001), whereas the modification of Kpr (lysinepropionylation) and O-GlcNA in 17M was significantly decreased compared with the level in 3M mice (p < 0.05, p < 0.01). Furthermore, the expression levels of the TIP60, P300, PRDM9, KMT5B, and KMT5C genes encoding PTM regulators were up-regulated in 17M compared to 3M female mice (p < 0.05). These findings indicate that altered related regulatory enzymes and PTMs are associated with physiological ovarian aging in mice, which is expected to provide useful insights for the delay of ovarian aging and the diagnosis and treatment of female infertility.


Author(s):  
Anke Kloock ◽  
Lena Peters ◽  
Charlotte Rafaluk-Mohr

In most animals, female investment in offspring production is greater than for males. Lifetime reproductive success (LRS) is predicted to be optimized in females through extended lifespans to maximize reproductive events by increased investment in immunity. Males, however, maximize lifetime reproductive success by obtaining as many matings as possible. In populations consisting of mainly hermaphrodites, optimization of reproductive success may be primarily influenced by gamete and resource availability. Microbe-mediated protection (MMP) is known to affect both immunity and reproduction, but whether sex influences the response to MMP remains to be explored. Here, we investigated the sex-specific differences in survival, behavior, and timing of offspring production between feminized hermaphrodite (female) and male Caenorhabditis elegans following pathogenic infection with Staphylococcus aureus with or without MMP by Enterococcus faecalis. Overall, female survival decreased with increased mating. With MMP, females increased investment into offspring production, while males displayed higher behavioral activity. MMP was furthermore able to dampen costs that females experience due to mating with males. These results demonstrate that strategies employed under pathogen infection with and without MMP are sex dependent.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Kaja Balazy ◽  
Rafał Boehnke ◽  
Emilia Trudnowska ◽  
Janne E. Søreide ◽  
Katarzyna Błachowiak-Samołyk

AbstractRapidly warming Arctic is facing significant shifts in the zooplankton size-spectra manifested as increasing numbers of the small-sized copepod Oithona similis. Here we present a unique continuous data set covering 22 months, on its copepodite structure along with environmental drivers in the Atlantic-influenced high Arctic fjord Isfjorden (Spitsbergen). Abundance maxima of O. similis were observed in September when the highest seawater temperature was recorded. A high concentration of the indicator species of Atlantification Oithona atlantica was also observed at that time. The clear dominance of O. similis in the zooplankton community during the dark, theoretically unproductive season emphasizes its substantial role in sustaining a continuous carbon flow, when most of the large herbivorous copepods fall into sleeping state. The high sex ratio observed twice in both years during periods of high primary production suggests two main reproductive events per year. O. similis reproduced even in very low temperatures (< 0 °C) previously thought to limit their fecundity, which proves its unique thermal tolerance. Our study provides a new insight on ecology of this key copepod of marine ecosystems across the globe, and thus confirm the Climatic Variability Hypothesis assuming that natural selection favour species with such flexible adaptive traits as O. similis.


Author(s):  
Katelin Pearson ◽  
Libby Ellwood ◽  
Edward Gilbert ◽  
Rob Guralnick ◽  
James Macklin ◽  
...  

Phenological data (i.e., data on growth and reproductive events of organisms) are increasingly being used to study the effects of climate change, and biodiversity specimens have arisen as important sources of phenological data. However, phenological data are not expressly treated by the Darwin Core standard (Wieczorek et al. 2012), and specimen-based phenological data have been codified and stored in various Darwin Core fields using different vocabularies, making phenological data difficult to access, aggregate, and therefore analyze at scale across data sources. The California Phenology Network, an herbarium digitization collaboration launched in 2018, has harvested phenological data from over 1.4 million angiosperm specimens from California herbaria (Yost et al. 2020). We developed interim standards by which to score and store these data, but further development is needed for adoption of ideal phenological data standards into the Darwin Core. To this end, we are forming a Plant Specimen Phenology Task Group to develop a phenology extension for the Darwin Core standard. We will create fields into which phenological data can be entered and recommend a standardized vocabulary for use in these fields using the Plant Phenology Ontology (Stucky et al. 2018, Brenskelle et al. 2019). We invite all interested parties to become part of this Task Group and thereby contribute to the accesibility and use of these valuable data. In this talk, we will describe the need for plant phenological data standards, current challenges to developing such standards, and outline the next steps of the Task Group toward providing this valuable resource to the data user community.


Author(s):  
Michelle T. Foster

In mammals, reproductive function is closely regulated by energy availability. It is influenced by both extremes of nutrition, too few calories (undernutrition) and an excessive amount of calories (obesity). Atypical decreases or increases in weight can have adverse effects on the reproductive axis. This includes suppression of reproductive function, decreases in ovarian cyclicity, reduction in fertility, anovulation, and dysregulation of spermatogenesis. The balance between energy regulation and reproduction is supervised by a complex system comprised of the brain and peripheral tissues. The brain senses and integrates various systemic and central signals that are indicative of changes in body physiology and energy status. This occurs via numerous factors, including metabolic hormones and nutrients. Adipokines, endocrine factors primarily secreted by white adipose tissue, and adipose tissue related cytokines (adipocytokines) contribute to the regulation of maturity, fertility, and reproduction. Indeed, some adipokines play a fundamental role in reproductive disorders. The brain, predominantly the hypothalamus, is responsible for linking adipose-derived signals to pathways controlling reproductive processes. Gonadotropin-releasing hormone (GnRH) cells in the hypothalamus are fundamental in relaying adipose-derived signals to the pituitary–gonadal axis, which consequently controls reproductive processes. Leptin, adiponectin, apelin, chermin, resistin, and visfatin are adipokines that regulate reproductive events via the brain.


2021 ◽  
Author(s):  
Shinya Numata ◽  
Koharu Yamaguchi ◽  
Masaaki Shimizu ◽  
Gen Sakurai ◽  
Ayaka Morimoto ◽  
...  

In humid forests in Southeast Asia, many species from dozens of plant families flower gregariously and fruit synchronously at irregular multi-year intervals. Little is known about how climate change will impact these community-wide mass reproductive events. Here, we perform a comprehensive analysis of reproductive phenology and its environmental drivers based on a monthly reproductive phenology record from 210 species in 41 families in peninsular Malaysia. We find that the proportion of flowering and fruiting species decreased from 1976 to 2010. Using a phenology model with inputs obtained from general circulation models, we show that low-temperature flowering cues became less available during the monitoring period and will further decrease in the future, leading to decreased flowering opportunities in 57% of species in the Dipterocarpaceae family. Our results highlight the vulnerability of and variability in phenological responses across species in tropical ecosystems that differ from temperate and boreal biomes.


Sign in / Sign up

Export Citation Format

Share Document