synthesis algorithm
Recently Published Documents


TOTAL DOCUMENTS

435
(FIVE YEARS 65)

H-INDEX

23
(FIVE YEARS 3)

2022 ◽  
Vol 6 (POPL) ◽  
pp. 1-29
Author(s):  
Anders Miltner ◽  
Adrian Trejo Nuñez ◽  
Ana Brendel ◽  
Swarat Chaudhuri ◽  
Isil Dillig

We present a novel bottom-up method for the synthesis of functional recursive programs. While bottom-up synthesis techniques can work better than top-down methods in certain settings, there is no prior technique for synthesizing recursive programs from logical specifications in a purely bottom-up fashion. The main challenge is that effective bottom-up methods need to execute sub-expressions of the code being synthesized, but it is impossible to execute a recursive subexpression of a program that has not been fully constructed yet. In this paper, we address this challenge using the concept of angelic semantics. Specifically, our method finds a program that satisfies the specification under angelic semantics (we refer to this as angelic synthesis), analyzes the assumptions made during its angelic execution, uses this analysis to strengthen the specification, and finally reattempts synthesis with the strengthened specification. Our proposed angelic synthesis algorithm is based on version space learning and therefore deals effectively with many incremental synthesis calls made during the overall algorithm. We have implemented this approach in a prototype called Burst and evaluate it on synthesis problems from prior work. Our experiments show that Burst is able to synthesize a solution to 94% of the benchmarks in our benchmark suite, outperforming prior work.


Photonics ◽  
2021 ◽  
Vol 8 (11) ◽  
pp. 522
Author(s):  
Guomian Lv ◽  
Hao Xu ◽  
Huajun Feng ◽  
Zhihai Xu ◽  
Hao Zhou ◽  
...  

The novel rotating rectangular aperture (RRA) system provides a good solution for space-based, large-aperture, high-resolution imaging tasks. Its imaging quality depends largely on the image synthesis algorithm, and the mainstream multi-frame deblurring approach is sophisticated and time-consuming. In this paper, we propose a novel full-aperture image synthesis algorithm for the RRA system, based on Fourier spectrum restoration. First, a numerical simulation model is established to analyze the RRA system’s characteristics and obtain the point spread functions (PSFs) rapidly. Then, each image is used iteratively to calculate the increment size and update the final restored Fourier spectrum. Both the simulation’s results and the practical experiment’s results show that our algorithm performs well in terms of objective evaluation and time consumption.


2021 ◽  
Vol 5 (OOPSLA) ◽  
pp. 1-27
Author(s):  
Xiang Gao ◽  
Arjun Radhakrishna ◽  
Gustavo Soares ◽  
Ridwan Shariffdeen ◽  
Sumit Gulwani ◽  
...  

Use of third-party libraries is extremely common in application software. The libraries evolve to accommodate new features or mitigate security vulnerabilities, thereby breaking the Application Programming Interface(API) used by the software. Such breaking changes in the libraries may discourage client code from using the new library versions thereby keeping the application vulnerable and not up-to-date. We propose a novel output-oriented program synthesis algorithm to automate API usage adaptations via program transformation. Our aim is not only to rely on the few example human adaptations of the clients from the old library version to the new library version, since this can lead to over-fitting transformation rules. Instead, we also rely on example usages of the new updated library in clients, which provide valuable context for synthesizing and applying the transformation rules. Our tool APIFix provides an automated mechanism to transform application code using the old library versions to code using the new library versions - thereby achieving automated API usage adaptation to fix the effect of breaking changes. Our evaluation shows that the transformation rules inferred by APIFix achieve 98.7% precision and 91.5% recall. By comparing our approach to state-of-the-art program synthesis approaches, we show that our approach significantly reduces over-fitting while synthesizing transformation rules for API usage adaptations.


2021 ◽  
Vol 5 (OOPSLA) ◽  
pp. 1-29
Author(s):  
Rohan Bavishi ◽  
Caroline Lemieux ◽  
Koushik Sen ◽  
Ion Stoica

While input-output examples are a natural form of specification for program synthesis engines, they can be imprecise for domains such as table transformations. In this paper, we investigate how extracting readily-available information about the user intent behind these input-output examples helps speed up synthesis and reduce overfitting. We present Gauss, a synthesis algorithm for table transformations that accepts partial input-output examples, along with user intent graphs. Gauss includes a novel conflict-resolution reasoning algorithm over graphs that enables it to learn from mistakes made during the search and use that knowledge to explore the space of programs even faster. It also ensures the final program is consistent with the user intent specification, reducing overfitting. We implement Gauss for the domain of table transformations (supporting Pandas and R), and compare it to three state-of-the-art synthesizers accepting only input-output examples. We find that it is able to reduce the search space by 56×, 73× and 664× on average, resulting in 7×, 26× and 7× speedups in synthesis times on average, respectively.


Author(s):  
Yong Li ◽  
Andrea Turrini ◽  
Moshe Y. Vardi ◽  
Lijun Zhang

We consider the problem of synthesizing good-enough (GE)-strategies for linear temporal logic (LTL) over finite traces or LTLf for short. The problem of synthesizing GE-strategies for an LTL formula φ over infinite traces reduces to the problem of synthesizing winning strategies for the formula (∃Oφ)⇒φ where O is the set of propositions controlled by the system. We first prove that this reduction does not work for LTLf formulas. Then we show how to synthesize GE-strategies for LTLf formulas via the Good-Enough (GE)-synthesis of LTL formulas. Unfortunately, this requires to construct deterministic parity automata on infinite words, which is computationally expensive. We then show how to synthesize GE-strategies for LTLf formulas by a reduction to solving games played on deterministic Büchi automata, based on an easier construction of deterministic automata on finite words. We show empirically that our specialized synthesis algorithm for GE-strategies outperforms the algorithms going through GE-synthesis of LTL formulas by orders of magnitude.


Sign in / Sign up

Export Citation Format

Share Document