weak magnetic field
Recently Published Documents


TOTAL DOCUMENTS

622
(FIVE YEARS 95)

H-INDEX

34
(FIVE YEARS 5)

2022 ◽  
pp. 126707
Author(s):  
Feifei Zhu ◽  
Xiu Chen ◽  
Yi Cui ◽  
Xinjuan Hu ◽  
Jingya Qian ◽  
...  

2021 ◽  
Author(s):  
Yang Ming ◽  
Xiang ming Huang ◽  
Dong dong Zhou ◽  
Qing Zeng ◽  
Hong yu Li

Abstract Shear thickening polishing technology using non-Newtonian polishing fluid is a low-cost, low-damage polishing method for the ultra-precision machining of complex curved surfaces. However, the shortcomings of traditional shear thickening polishing fluid in polishing efficiency and fluid viscosity controllability limit its further application., a novel weak magnetic field-assisted shear thickening polishing fluid (WMFA-STPF) containing carbonyl iron particles (CIPs) is presented in this study, which utilizes its weak magnetorheological effect to strengthen the shear thickening phenomenon. The rheological characteristics of the WMFA-STPF samples were investigated. The results show that WMFA-STPF has good fluidity in the low shear rate range and better thickening characteristics in the working shear rate range. In order to verify the high efficiency, high quality and high uniformity polishing ability of the weak magnetic field-assisted shear thickening polishing technology for the spherical surface of zirconia ceramic workpiece, the contrast polishing experiment was designed and finished. The experimental results show that the weak magnetic field-assisted thickening effect can achieve high efficiency and high quality polishing of hard and brittle ceramics. After 75 min polishing, the surface damage was effectively improved and eliminated, the surface quality and uniformity were greatly improved, and the material removal rate reached 7.82 μm/h, increased by 156%.


2021 ◽  
Vol 2021 (12) ◽  
Author(s):  
Mamiya Kawaguchi ◽  
Shinya Matsuzaki ◽  
Akio Tomiya

Abstract Violation of scale symmetry, scale anomaly, being a radical concept in quantum field theory, is of importance to comprehend the vacuum structure of QCD, and should potentially contribute to the chiral phase transition in thermal QCD, as well as the chiral and U(1) axial symmetry. Though it should be essential, direct evidence of scale anomalies has never been observed in the chiral phase transition. We propose a methodology to detect a scale anomaly in the chiral phase transition, which is an electromagnetically induced scale anomaly: apply a weak magnetic field background onto two-flavor massless QCD with an extremely heavy strange quark, first observe the chiral crossover; second, adjusting the strange quark mass to be smaller and smaller, observe the second-order chiral phase transition, and then the first-order one in the massless-three flavor limit. Thus, the second-order chiral phase transition, observed as the evidence of the quantum scale anomaly, is a new critical endpoint. It turns out that this electromagnetic scale anomaly gets most operative in the weak magnetic field regime, rather than a strong field region. We also briefly address accessibility of lattice QCD, a prospected application to dense matter system, and implications to astrophysical observations, such as gravitational wave productions provided from thermomagnetic QCD-like theories.


Vacuum ◽  
2021 ◽  
Vol 194 ◽  
pp. 110584
Author(s):  
Pavel A. Yunin ◽  
Yury I. Sachkov ◽  
Vlad V. Travkin ◽  
Evgeny V. Skorokhodov ◽  
Georgy L. Pakhomov

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Rabie I. Mohamed ◽  
Manal G. Eldin ◽  
Ahmed Farouk ◽  
A. A. Ramadan ◽  
M. Abdel-Aty

AbstractThe present research is designed to examine the dynamic of the quantum computational speed in a nanowire system through the orthogonality speed when three distinct types of magnetic fields are applied: the strong magnetic field, the weak magnetic field, and no magnetic field. Moreover, we investigate the action of the magnetic fields, the spin-orbit coupling, and the system’s initial states on the orthogonality speed. The observed results reveal that a substantial correlation between the intensity of the spin-orbit coupling and the dynamics of the orthogonality speed, where the orthogonality speed decreasing as the spin-orbit coupling increases. Furthermore, the initial states of the nanowire system are critical for regulating the speed of transmuting the information and computations.


2021 ◽  
pp. 38-43
Author(s):  
Phedor Ivandikov ◽  
Ilya Zadiriev ◽  
Elena Kralkina

Research into the influence of a weak external magnetic field (<150 G) on the efficiency of power coupling to plasma and on the structure of axial RF fields in plasma is presented. Power coupling to the discharge plasma as well as the structure of the axial component of RF magnetic fields are shown to depend on the external magnetic field’s magnitude in a nonmonotous manner.


2021 ◽  
Vol 2015 (1) ◽  
pp. 012135
Author(s):  
V A Shabashov ◽  
V K Kozin ◽  
A V Kavokin ◽  
I A Shelykh

Abstract The anomalous exciton Hall effect is a phenomenon that occurs in a quantum well in the presence of an external magnetic field applied perpendicular to the surface due to the interaction of the exciton dipole moment with an electric field, formed by the charged impurities. The effect was fully described in [1] for different magnetic field regimes. In this paper, we focus on the way the perturbation method was used for finding the ground state energy of an exciton in the limit of a weak magnetic field.


2021 ◽  
Vol 10 (1) ◽  
pp. 55
Author(s):  
Jiří Přibil ◽  
Anna Přibilová ◽  
Ivan Frollo

The paper describes and compares properties of two realizations of wearable sensors based on the photoplethysmography (PPG) principle for non-invasive acquisition of the human heart rate. The designed sensors enable measurement of the PPG signal in the magnetic field environment with the inherent radiofrequency and electromagnetic disturbance. They can monitor the stress of a tested person during examination in the scanning area of the open-air magnetic resonance tomograph. The performed auxiliary experiments verify the practical functionality of both developed sensors including real-time wireless transmission of the measured PPG signal samples to the control device for further analysis and processing.


2021 ◽  
Vol 104 (16) ◽  
Author(s):  
Ke Wang ◽  
M. E. Raikh ◽  
T. A. Sedrakyan

Sign in / Sign up

Export Citation Format

Share Document