Abstract
The broken ice is one of the most common ice conditions for ice-going ships, and the research of ship maneuvering movement in broken ice field can improve sailing safety. In this paper, the discrete element method (DEM) was adopted to study the maneuverable forces, including resistance and transverse force, of ice-going ship oblique sailing in broken ice fields. First, the Araon model tests data of Korea Institute of Ocean Science & Technology (KIOST) was used to verify the ice resistance of direct sailing under different ice sizes and model speeds, and the numerical results are in good agreement with the test results. Second, the influences of broken ice parameters (including concentration, thickness, and shape) on ship-ice interaction and maneuverable forces distribution were researched. The maneuverable forces on the ice-going ships are mainly from the ship-ice interaction. The time history curves of maneuverable forces were analyzed from the average value of maneuverable forces, the average value of peak maneuverable forces, and the number of peaks. Besides, the parameters of broken ice have a heavy influence on the movement of broken ice around the hull, such as accumulating and sliding. The analysis of the broken ice movement contributes to understanding the influences of broken ice parameters on ice-going ships.