Prakasam Michael Joseph stalin
◽
Thottipalayam Vellingri Arjunan
◽
Mohammed Abdulrahman Almeshaal
◽
Palaniappan Murugesan
◽
Balaramachandran Prabu
◽
...
Abstract
Thermodynamic performance analysis is carried out on a flat plate solar thermal collector utilizing single and hybrid nanofluids. As heat transfer fluids, Fe2O4/water, Zn-Fe2O4/water hybrid nanofluids, and water are used, and its performance are compared based on the energy and exergy transfer rate. The thermo-physical properties are evaluated by regression polynomial model for all the working fluids. Developed codes in MATLAB solve the collector's thermal model iteratively, energy and exergetic performance are evaluated. The system was then subjected to parametric investigation and optimization for variations in fluid flow rate, temperatures, and concentrations of nanoparticles. The findings show that utilizing Zn-Fe2O4/water hybrid nanofluids with a particle concentration of 0.5 percent enhanced the solar collector's thermal performance by 6.6% while using Fe2O4/water nanofluids raised the collector's thermal performance by 7.83% when compared to water as the working fluid. While hybrid nanofluids give a better thermal alternative than water and single nanofluids, they have also produced a 5.36% increase in exergetic efficiency and an enhancement of 8.24 percent when used with Fe2O4/water nanofluids.