trehalose monomycolate
Recently Published Documents


TOTAL DOCUMENTS

17
(FIVE YEARS 9)

H-INDEX

7
(FIVE YEARS 3)

Author(s):  
Eric Oldfield ◽  
Satish R. Malwal

Lipid transporters play an important role in most if not all organisms, ranging from bacteria to humans. For example, in Mycobacterium tuberculosis, the trehalose monomycolate transporter MmpL3 is involved in cell wall biosynthesis, while in humans, cholesterol transporters are involved in normal cell function as well as in disease. Here, using structural and bioinformatics information, we propose that there are proteins that also contain “MmpL3-like” (MMPL) transmembrane (TM) domains in many protozoa, including Trypanosoma cruzi, as well as in the bacterium Staphylococcus aureus, where the fatty acid transporter FarE has the same set of “active-site” residues as those found in the mycobacterial MmpL3s, and in T. cruzi. We also show that there are strong sequence and predicted structural similarities between the TM proton-translocation domain seen in the X-ray structures of mycobacterial MmpL3s and several human as well as fungal lipid transporters, leading to the proposal that there are similar proteins in apicomplexan parasites, and in plants. The animal, fungal, apicomplexan and plant proteins have larger extra-membrane domains than are found in the bacterial MmpL3, but they have a similar TM domain architecture, with the introduction of a (catalytically essential) Phe>His residue change, and a Ser/Thr H-bond network, involved in H -transport. Overall, the results are of interest since they show that MMPL-family proteins are present in essentially all life-forms: archaea, bacteria, protozoa, fungi, plants and animals and, where known, they are involved in “lipid” (glycolipid, phospholipid, sphingolipid, fatty acid, cholesterol, ergosterol) transport, powered by transmembrane molecular pumps having similar structures.


PLoS Biology ◽  
2021 ◽  
Vol 19 (8) ◽  
pp. e3001370
Author(s):  
Chih-Chia Su ◽  
Philip A. Klenotic ◽  
Meng Cui ◽  
Meinan Lyu ◽  
Christopher E. Morgan ◽  
...  

The mycobacterial membrane protein large 3 (MmpL3) transporter is essential and required for shuttling the lipid trehalose monomycolate (TMM), a precursor of mycolic acid (MA)-containing trehalose dimycolate (TDM) and mycolyl arabinogalactan peptidoglycan (mAGP), in Mycobacterium species, including Mycobacterium tuberculosis and Mycobacterium smegmatis. However, the mechanism that MmpL3 uses to facilitate the transport of fatty acids and lipidic elements to the mycobacterial cell wall remains elusive. Here, we report 7 structures of the M. smegmatis MmpL3 transporter in its unbound state and in complex with trehalose 6-decanoate (T6D) or TMM using single-particle cryo-electron microscopy (cryo-EM) and X-ray crystallography. Combined with calculated results from molecular dynamics (MD) and target MD simulations, we reveal a lipid transport mechanism that involves a coupled movement of the periplasmic domain and transmembrane helices of the MmpL3 transporter that facilitates the shuttling of lipids to the mycobacterial cell wall.


2019 ◽  
Vol 88 (6) ◽  
pp. 809-815 ◽  
Author(s):  
Kien Lam Ung ◽  
Husam M. A. B. Alsarraf ◽  
Laurent Kremer ◽  
Mickaël Blaise

2019 ◽  
Vol 116 (23) ◽  
pp. 11241-11246 ◽  
Author(s):  
Chih-Chia Su ◽  
Philip A. Klenotic ◽  
Jani Reddy Bolla ◽  
Georgiana E. Purdy ◽  
Carol V. Robinson ◽  
...  

The cell envelope ofMycobacterium tuberculosisis notable for the abundance of mycolic acids (MAs), essential to mycobacterial viability, and of other species-specific lipids. The mycobacterial cell envelope is extremely hydrophobic, which contributes to virulence and antibiotic resistance. However, exactly how fatty acids and lipidic elements are transported across the cell envelope for cell-wall biosynthesis is unclear. Mycobacterial membrane protein Large 3 (MmpL3) is essential and required for transport of trehalose monomycolates (TMMs), precursors of MA-containing trehalose dimycolates (TDM) and mycolyl arabinogalactan peptidoglycan, but the exact function of MmpL3 remains elusive. Here, we report a crystal structure ofMycobacterium smegmatisMmpL3 at a resolution of 2.59 Å, revealing a monomeric molecule that is structurally distinct from all known bacterial membrane proteins. A previously unknown MmpL3 ligand, phosphatidylethanolamine (PE), was discovered inside this transporter. We also show, via native mass spectrometry, that MmpL3 specifically binds both TMM and PE, but not TDM, in the micromolar range. These observations provide insight into the function of MmpL3 and suggest a possible role for this protein in shuttling a variety of lipids to strengthen the mycobacterial cell wall.


2019 ◽  
Author(s):  
Allison Fay ◽  
Nadine Czudnochowski ◽  
Jeremy Rock ◽  
Jeffrey R. Johnson ◽  
Nevan J. Krogan ◽  
...  

AbstractMycolic acids are the signature lipid of mycobacteria and constitute an important physical component of the cell wall, a target of mycobacterial specific antibiotics, and a mediator of M. tuberculosis pathogenesis. Mycolic acids are synthesized in the cytoplasm and are thought to be transported to the cell wall as a trehalose ester by the MmpL3 transporter, an antibiotic target for M. tuberculosis. However, the mechanism by which mycolate synthesis is coupled to transport, and the full MmpL3 transport machinery, is unknown. Here we identify two new components of the MmpL3 transport machinery in mycobacteria. The protein encoded by MSMEG_0736/Rv0383c is essential for growth of M. smegmatis and M. tuberculosis, is anchored to the cytoplasmic membrane, physically interacts with and colocalizes with MmpL3 in growing cells, and is required for trehalose monomycolate transport to the cell wall. In light of these findings we propose Msmeg_0736/Rv0383c be named “TMM transport factor A”, TtfA. The protein encoded by MSMEG_5308 also interacts with the MmpL3 complex, but is nonessential for growth or TMM transport. However, MSMEG_5308 accumulates with inhibition of MmpL3 mediated TMM transport and stabilizes the MmpL3/TtfA complex, indicating that it stabilizes the transport system during stress. These studies identify two new components of the mycobacterial mycolate transport machinery, an emerging antibiotic target in M. tuberculosis.


ChemBioChem ◽  
2019 ◽  
Vol 20 (10) ◽  
pp. 1282-1291 ◽  
Author(s):  
Taylor J. Fiolek ◽  
Nicholas Banahene ◽  
Herbert W. Kavunja ◽  
Nathan J. Holmes ◽  
Adrian K. Rylski ◽  
...  

2019 ◽  
Author(s):  
Chih-Chia Su ◽  
Philip Klenotic ◽  
Jani Reddy Bolla ◽  
Georgiana Purdy ◽  
Carol Robinson ◽  
...  

The cell envelope of Mycobacterium tuberculosis is notable for the abundance of mycolic acids (MAs), which are essential to mycobacterial viability, and other species-specific lipids. The mycobacterial cell envelope is extremely hydrophobic, contributes to virulence and antibiotic resistance. Yet, exactly how fatty acids and lipidic elements are transported across the cell envelope for cell wall biosynthesis is unclear. Mycobacterial membrane protein Large 3 (MmpL3) is essential and required for transport of trehalose monomycolates (TMMs), precursors of MA containing trehalose dimycolates (TDM) and mycolyl arabinogalactan peptidoglycan (mAGP), but the exact function of MmpL3 remains elusive. Here, we report a high-resolution crystal structure of M. smegmatis MmpL3, revealing a monomeric molecule that is structurally distinct from all known bacterial membrane proteins. A previously unknown MmpL3 ligand, phosphatidylethanolamine (PE), was discovered inside this transporter. We also show, via native mass spectrometry, that MmpL3 specifically binds both TMM and PE, but not TDM, in the micromolar range. These observations provide insight into the function of MmpL3 and suggest a possible role for this protein in shuttling a variety of lipids to strengthen the mycobacterial cell wall.


2019 ◽  
Vol 55 (87) ◽  
pp. 13074-13077
Author(s):  
Emilie Lesur ◽  
Aurélie Baron ◽  
Christiane Dietrich ◽  
Marie Buchotte ◽  
Gilles Doisneau ◽  
...  

In this study we describe the first synthesis of an alkyne-based trehalose monomycolate probe closely mimicking the complex pattern of mycolic acids and its utility for the study of mycomembrane and mycoloyltransferases in Corynebacteria.


2017 ◽  
Author(s):  
M. Kamariza ◽  
P. Shieh ◽  
F. P. Rodriguez-Rivera ◽  
C. S. Ealand ◽  
B. Chu ◽  
...  

Abstract:Tuberculosis (TB) is the leading cause of death from an infectious bacterial disease. Poor diagnostic tools to detect active disease plague TB control programs and affect patient care. Accurate detection of live Mycobacterium tuberculosis (Mtb), the causative agent of TB, will improve TB diagnosis and patient treatment. We report that live mycobacteria can be specifically detected with a fluorogenic trehalose analog. We designed a 4-N,N-dimethylamino-1,8- naphthalimide-trehalose (DMN-Tre) conjugate that undergoes >700-fold fluorescence increase when transitioned from aqueous to hydrophobic environments. This enhancement occurs upon metabolic conversion of DMN-Tre to trehalose monomycolate and incorporation into the outer membrane. DMN-Tre labeling enabled the rapid, no-wash visualization of mycobacterial and corynebacterial species without nonspecific labeling of Gram-positive or –negative bacteria. DMN-Tre labeling was selective for live mycobacteria and was reduced by treatment with TB drugs. Lastly, DMN-Tre labeled Mtb in TB-positive sputum samples suggesting this operationally simple method may be deployable for TB diagnosis.


Sign in / Sign up

Export Citation Format

Share Document