covalent linkage
Recently Published Documents


TOTAL DOCUMENTS

255
(FIVE YEARS 41)

H-INDEX

40
(FIVE YEARS 6)

Author(s):  
Seda Cetindere ◽  
Simon T. Clausing ◽  
Montaha Anjass ◽  
Yusen Luo ◽  
Stephan Kupfer ◽  
...  

BioResources ◽  
2021 ◽  
Vol 16 (4) ◽  
pp. 8457-8488
Author(s):  
Hendryk Würfel ◽  
Katja Geitel ◽  
Haisong Qi ◽  
Thomas Heinze

Pectin, as a sustainable biopolymer with its two complementary functionalities (carboxyl and hydroxyl moieties) imparted in the α-1,4-galacturonic acid repeating unit, has gained increasing attention in the last few years. The interest in this ubiquitously occurring plant originating polysaccharide (PS) has shifted slowly from applications as a food additive to a broader range of potential applications in medicine, cosmetics, and other industries. Due to the increasing interest in alternatives for petrochemical materials, PSs as biomaterials have gained increasing attention in industrial processes in general. In the last decade, an increasing number of chemical transformations related to pectin have been published, and this is a prerequisite for the design of the structure and hence properties of novel biopolymer-based materials. This work aims to review the chemical modifications of pectin by covalent linkage of the last decade and analyze the materials obtained with these chemical methods critically.


BioResources ◽  
2021 ◽  
Vol 16 (4) ◽  
pp. 8457-8488
Author(s):  
Hendryk Würfel ◽  
Katja Geitel ◽  
Haisong Qi ◽  
Thomas Heinze

Pectin, as a sustainable biopolymer with its two complementary functionalities (carboxyl and hydroxyl moieties) imparted in the α-1,4-galacturonic acid repeating unit, has gained increasing attention in the last few years. The interest in this ubiquitously occurring plant originating polysaccharide (PS) has shifted slowly from applications as a food additive to a broader range of potential applications in medicine, cosmetics, and other industries. Due to the increasing interest in alternatives for petrochemical materials, PSs as biomaterials have gained increasing attention in industrial processes in general. In the last decade, an increasing number of chemical transformations related to pectin have been published, and this is a prerequisite for the design of the structure and hence properties of novel biopolymer-based materials. This work aims to review the chemical modifications of pectin by covalent linkage of the last decade and analyze the materials obtained with these chemical methods critically.


2021 ◽  
Vol 22 (14) ◽  
pp. 7285
Author(s):  
Yu Mu ◽  
Birke Andrea Tews ◽  
Christine Luttermann ◽  
Gregor Meyers

Pestiviruses contain three envelope proteins: Erns, E1, and E2. Expression of HA-tagged E1 or mutants thereof showed that E1 forms homodimers and -trimers. C123 and, to a lesser extent, C171, affected the oligomerization of E1 with a double mutant C123S/C171S preventing oligomerization completely. E1 also establishes disulfide linked heterodimers with E2, which are crucial for the recovery of infectious viruses. Co-expression analyses with the HA-tagged E1 wt/E1 mutants and E2 wt/E2 mutants demonstrated that C123 in E1 and C295 in E2 are the critical sites for E1/E2 heterodimer formation. Introduction of mutations preventing E1/E2 heterodimer formation into the full-length infectious clone of BVDV CP7 prevented the recovery of infectious viruses, proving that C123 in E1 and C295 in E2 play an essential role in the BVDV life cycle, and further support the conclusion that heterodimer formation is the crucial step. Interestingly, we found that the retention signal of E1 is mandatory for intracellular localization of the heterodimer, so that absence of the E1 retention signal directs the heterodimer to the cell surface even though the E2 retention signal is still present. The covalent linkage between E1 and E2 plays an essential role for this process.


Author(s):  
Christopher Selby, PharmD, BCOP ◽  
Breanne Peyton-Thomas, PharmD, BCOP ◽  
Parnian Eslami, PharmD

In 1991, the U.S. Food & Drug Administration (FDA) approved rmetHuG-CSF for human use. This recombinant methionyl human granulocyte colony-stimulating factor, or filgrastim, saw use in over 1 million patients in its first 5 years on the market. In 2002, the FDA approved a version of filgrastim with covalent linkage to a monomethoxypolyethylene glycol, increasing the molecular size and half-life to replace multiple days of dosing with a single injection. These medications remained standard of care for neutropenia until the Biologics Price Competition and Innovation Act of 2009 created an abbreviated pathway to licensure for biologic products. Practitioners now have their pick of numerous and expanding options for pegfilgrastim biosimilars.


Author(s):  
Robert A. Nicholls ◽  
Robbie P. Joosten ◽  
Fei Long ◽  
Marcin Wojdyr ◽  
Andrey Lebedev ◽  
...  

In this contribution, the current protocols for modelling covalent linkages within the CCP4 suite are considered. The mechanism used for modelling covalent linkages is reviewed: the use of dictionaries for describing changes to stereochemistry as a result of the covalent linkage and the application of link-annotation records to structural models to ensure the correct treatment of individual instances of covalent linkages. Previously, linkage descriptions were lacking in quality compared with those of contemporary component dictionaries. Consequently, AceDRG has been adapted for the generation of link dictionaries of the same quality as for individual components. The approach adopted by AceDRG for the generation of link dictionaries is outlined, which includes associated modifications to the linked components. A number of tools to facilitate the practical modelling of covalent linkages available within the CCP4 suite are described, including a new restraint-dictionary accumulator, the Make Covalent Link tool and AceDRG interface in Coot, the 3D graphical editor JLigand and the mechanisms for dealing with covalent linkages in the CCP4i2 and CCP4 Cloud environments. These integrated solutions streamline and ease the covalent-linkage modelling workflow, seamlessly transferring relevant information between programs. Current recommended practice is elucidated by means of instructive practical examples. By summarizing the different approaches to modelling linkages that are available within the CCP4 suite, limitations and potential pitfalls that may be encountered are highlighted in order to raise awareness, with the intention of improving the quality of future modelled covalent linkages in macromolecular complexes.


Author(s):  
Robert A. Nicholls ◽  
Marcin Wojdyr ◽  
Robbie P. Joosten ◽  
Lucrezia Catapano ◽  
Fei Long ◽  
...  

Covalent linkages between constituent blocks of macromolecules and ligands have been subject to inconsistent treatment during the model-building, refinement and deposition process. This may stem from a number of sources, including difficulties with initially detecting the covalent linkage, identifying the correct chemistry, obtaining an appropriate restraint dictionary and ensuring its correct application. The analysis presented herein assesses the extent of problems involving covalent linkages in the Protein Data Bank (PDB). Not only will this facilitate the remediation of existing models, but also, more importantly, it will inform and thus improve the quality of future linkages. By considering linkages of known type in the CCP4 Monomer Library (CCP4-ML), failure to model a covalent linkage is identified to result in inaccurate (systematically longer) interatomic distances. Scanning the PDB for proximal atom pairs that do not have a corresponding type in the CCP4-ML reveals a large number of commonly occurring types of unannotated potential linkages; in general, these may or may not be covalently linked. Manual consideration of the most commonly occurring cases identifies a number of genuine classes of covalent linkages. The recent expansion of the CCP4-ML is discussed, which has involved the addition of over 16 000 and the replacement of over 11 000 component dictionaries using AceDRG. As part of this effort, the CCP4-ML has also been extended using AceDRG link dictionaries for the aforementioned linkage types identified in this analysis. This will facilitate the identification of such linkage types in future modelling efforts, whilst concurrently easing the process involved in their application. The need for a universal standard for maintaining link records corresponding to covalent linkages, and references to the associated dictionaries used during modelling and refinement, following deposition to the PDB is emphasized. The importance of correctly modelling covalent linkages is demonstrated using a case study, which involves the covalent linkage of an inhibitor to the main protease in various viral species, including SARS-CoV-2. This example demonstrates the importance of properly modelling covalent linkages using a comprehensive restraint dictionary, as opposed to just using a single interatomic distance restraint or failing to model the covalent linkage at all.


Sign in / Sign up

Export Citation Format

Share Document