soil disinfestation
Recently Published Documents


TOTAL DOCUMENTS

241
(FIVE YEARS 76)

H-INDEX

27
(FIVE YEARS 6)

Plant Disease ◽  
2022 ◽  
Author(s):  
Maria Lodovica Gullino ◽  
Angelo Garibaldi ◽  
Abraham Gamliel ◽  
Jaacov Katan

This Feature Article tracks 100 years of soil disinfestation: from the goal of eradicating soilborne pathogens and pests to much milder approaches, aimed at establishing a healthier soil, by favoring or enhancing the beneficial soil microflora and introducing biological control agents. The restrictions on use of many chemical fumigants is favoring the adoption of nonchemical strategies, from soilless cultivation to the use of physical or biological control measures, with more focus on maintaining soil microbial diversity, thus enhancing soil and plant health. Such approached are described and discussed, with special focus on their integrated use.


2021 ◽  
Vol 12 ◽  
Author(s):  
Yu Zhan ◽  
Ning Yan ◽  
Xinyue Miao ◽  
Qiong Li ◽  
Changbao Chen

Reductive soil disinfestation (RSD) and soil fumigant chloropicrin (SFC) are two common agricultural strategies for the elimination of soil-borne pathogens. However, the differences in soil environmental factors, soil bacterial microbiome, and root performance between SFC and RSD are poorly understood. In this study, three soil treatments, untreated control (CK), SFC with 0.5 t⋅ha–1 chloropicrin, and RSD with 15 t⋅ha–1 animal feces, were compared. We evaluated their effects on soil environmental factors, bacterial community structure, and root activity using chemical analysis and high-throughput sequencing. RSD treatment improved soil composition structure, bacterial diversity, and root performance to a greater extent. Carbon source utilization preference and bacterial community structure were strikingly altered by SFC and RSD practices. Bacterial richness, diversity, and evenness were notably lowered in the SFC- and RSD-treated soil compared with the CK-treated soil. However, RSD-treated soil harbored distinct unique and core microbiomes that were composed of more abundant and diverse potentially disease-suppressive and organic-decomposable agents. Also, soil bacterial diversity and composition were closely related to soil physicochemical properties and enzyme activity, of which pH, available Na (ANa), available Mg (AMg), available Mn (AMn), total Na (TNa), total Ca (TCa), total Cu (TCu), total Sr (TSr), urease (S-UE), acid phosphatase (S-ACP), and sucrase (S-SC) were the main drivers. Moreover, RSD treatment also significantly increased ginseng root activity. Collectively, these results suggest that RSD practices could considerably restore soil nutrient structure and bacterial diversity and improve root performance, which can be applied as a potential agricultural practice for the development of disease-suppressive soil.


Author(s):  
Oleg Daugovish ◽  
Joji Muramoto ◽  
Carol Shennan ◽  
Margherita Zavatta

Anaerobic soil disinfestation (ASD) has been optimized and adopted as an organic alternative to chemical fumigation by strawberry growers in California. The ASD process relies on mixing labile carbon sources into the soil to generate chemical, physical, and microbiological changes aiding suppression of the soil-borne pathogens and enhancing fruit production. Continued ASD adoption is hindered by the increasing cost of rice bran, currently the most widely used carbon source. To address this need and to find suitable and economical alternative carbon sources, we conducted field evaluations of locally produced or sourced plant-based products. ASD with incorporated grass-sod clippings spent grain and coffee grounds from one supplier provided a 47% to 83% increase in fruit yields compared to untreated soil, but coffee grounds from a different supplier decreased strawberry yields. Carbon, nitrogen, and their ratios had important impacts on the efficacy of ASD with coffee grounds and grape pomace. ASD with wheat midds at 20 t/ha provided strawberry yields similar to chloropicrin-fumigated soil while substituting 30% of rice bran carbon rate with on-site grown cereal cover crop biomass resulted in yields similar to the full rate of rice bran but at a reduced cost. As we continue exploring cost-effective methods of soil disinfestation, we utilize ASD integrated with other pest management tools, such as the use of resistant cultivars and crop rotation for sustainable production.


2021 ◽  
Vol 5 ◽  
Author(s):  
Keagan J. Swilling ◽  
Utsala Shrestha ◽  
Bonnie H. Ownley ◽  
Kimberly D. Gwinn ◽  
David M. Butler

Volatile fatty acids (VFAs), such as acetic and n-butyric acid, released during anaerobic decomposition of organic soil amendments during anaerobic soil disinfestation (ASD) likely play a role in soilborne plant pathogen inoculum suppression. However, research is limited on the direct effects of soil VFA exposure on fungal plant pathogen inoculum, effects on pathogen antagonists such as Trichoderma spp., and the role of soil microbial VFA metabolism on reducing exposure effects. The present study addresses these limitations through a series of studies evaluating the effects of VFA (acetic or n-butyric acid), VFA concentration (4, 8, or 16 mmol/kg soil), soil sterilization by autoclaving, and soil amendment on the viability of Athelia rolfsii (Sclerotium rolfsii) sclerotia post VFA exposure, and soil populations of Trichoderma spp. HCl and water-only controls were included. After 4-days exposure in an acidic, anaerobic environment, sclerotial viability, and colonization by culturable fungi or bacteria were assessed with standard procedures. Greenhouse experiments were similarly conducted to evaluate endemic soil populations of Trichoderma spp. following soil exposure to VFAs and Trichoderma spp. populations assessed with standard soil dilution plating onto semi-selective medium. Sclerotial germination was generally reduced by soil exposure to acetic (35.1% germination) or n-butyric (21.9% germination) acids compared to water (74.3% germination) and HCl (62.7% germination). Germination was reduced as VFA concentration increased from 4 to 8 and 16 mmol/kg (39.5, 29.1, and 16.9%, respectively). In amended soils, there was no difference in sclerotial germination compared to non-amended soils, but in the greenhouse experiment there was a Trichoderma spp. population increase of over 300% in amended soil [3.4 × 106 colony forming units (CFU)/g soil] compared to the non-amended soil (9.6 × 105 CFU/g soil). Soil autoclaving had no effect on sclerotial germination at low VFA concentrations, but sclerotial germination was reduced at higher VFA concentrations compared to non-autoclaved soil. Our results suggest that VFAs contribute to sclerotial mortality in strongly acidic soil environments, and mortality is influenced by VFA components and environment. Antifungal activity is less for acetic acid than for n-butyric, and less in non-sterile soil environments more typical of field conditions than in sterile laboratory conditions.


Author(s):  
Claire M. Murphy ◽  
Daniel L. Weller ◽  
Mark S. Reiter ◽  
Cameron A. Bardsley ◽  
Joseph Eifert ◽  
...  

Author(s):  
Atsuko Ueki ◽  
Akio Tonouchi ◽  
Nobuo Kaku ◽  
Katsuji Ueki

An obligately anaerobic bacterial strain (CTTWT) belonging to the family Lachnospiraceae within the class Clostridia was isolated from an anoxic soil sample subjected to biological or reductive soil disinfestation. Cells of the strain were Gram-stain-positive, short rods with peritrichous flagella. The strain was saccharolytic and decomposed polysaccharides, chitin, xylan and β-1,3-glucan. Strain CTTWT decomposed cell biomass and cell-wall preparations of an ascomycete plant pathogen, Fusarium oxysporum f. sp. spinaciae. The strain produced acetate, ethanol, H2 and CO2 as fermentation products from the utilized substrates. The major cellular fatty acids of the strain were C16 : 1 ω7c dimethylacetal (DMA), C16 : 0 DMA and C18 : 1 ω7c DMA. The closely related species of strain CTTWT based on the 16S rRNA gene sequences were species in the genus Anaerocolumna with sequence similarities of 95.2–97.6 %. Results of genome analyses of strain CTTWT indicated that the genome size of the strain was 5.62 Mb and the genomic DNA G+C content was 38.3 mol%. Six 16S rRNA genes with five different sequences from each other were found in the genome. Strain CTTWT had genes encoding chitinase, xylanase, cellulase, β-glucosidase and nitrogenase as characteristic genes in the genome. Homologous genes encoding these proteins were found in the genomes of the related Anaerocolumna species, but the genomic and phenotypic properties of strain CTTWT were distinct from them. Based on the phylogenetic, genomic and phenotypic analyses, the name Anaerocolumna chitinilytica sp. nov., in the family Lachnospiraceae is proposed for strain CTTWT (=NBRC 112102T=DSM 110036T).


Sign in / Sign up

Export Citation Format

Share Document