rotational speed control
Recently Published Documents


TOTAL DOCUMENTS

68
(FIVE YEARS 7)

H-INDEX

7
(FIVE YEARS 1)

Energies ◽  
2021 ◽  
Vol 14 (23) ◽  
pp. 7882
Author(s):  
Andrzej Popenda ◽  
Andrzej Szafraniec ◽  
Andriy Chaban

The electromechanical systems under analysis include electric drives, working machines that perform specific tasks in the technological process, and working mechanisms that transmit mechanical power between the electric drive and the working machine. The vast majority of electric motors included in drive systems require rotational speed control. This task is most often performed with the use of closed-loop control structures based on speed controllers. A step or overly rapid change in the speed reference causes a temporary lock of the speed controller due to the applied limitations at its output. Particularly, unfavorable effects of such a lock can be observed in drive systems in which there is a long elastic coupling (transmission shaft) between the electric motor and the working machine. As a consequence, shaft torsion and accompanying twisting moments of considerable amplitudes appear. This article proposes an uncomplicated active torque limiter structure, which enables the uninterrupted operation of the speed controller thanks to the automatic adaptation of the rate of the speed reference change to any moment of inertia of the rotor and attached rotating masses. The results of the investigations confirm the effectiveness of the proposed structure.


2021 ◽  
pp. 32-36
Author(s):  
EVGENIY V. AVAKIMYANTS ◽  
◽  
VLADISLSAV V. GORDEEV ◽  

To ensure the eff ective use of protein-mineral-vitamin supplements in the diets of dairy cows, a mixer design has been developed for their preliminary mixing before adding to the main mixing process. Based on the structural-morphological analysis, alternative structural elements of the mixer design have been considered and conventional symbols were assigned to them. A morphological matrix of solutions has been compiled to off er a set of alternative options. The mixer drive was chosen by the ability to ensure high speed, rotational speed control, user-friendly operation and cost. The design uses an electromechanical drive combined with a V-belt drive. This solution meets all the specifi ed requirements and allows protecting the drive from possible overloads. The working tool was chosen based on the requirement to contact the material actively throughout the chamber volume and to avoid the formation of stagnant zones. A blade mixer with variable blade positioning was found the most eff ective tool for the high-speed mixing of bulk materials. The designed mixer will be operating at a continuously varying speed in the range from 500 to 1500 min-1. This will off er the advantages of high-speed mixing while reducing the infl uence of negative factors on the fi nal mixture quality. The resulting decision matrix will allow determining the most promising areas for further designing, which makes it possible to improve the quality of the developed technical means.


2020 ◽  
Vol 10 (24) ◽  
pp. 8975
Author(s):  
Fares M’zoughi ◽  
Izaskun Garrido ◽  
Aitor J. Garrido ◽  
Manuel De La Sen

This paper presents an ANN-based rotational speed control to avoid the stalling behavior in Oscillating Water Columns composed of a Doubly Fed Induction Generator driven by a Wells turbine. This control strategy uses rotational speed reference provided by an ANN-based Maximum Power Point Tracking. The ANN-based MPPT predicts the optimal rotational speed reference from wave amplitude and period. The neural network has been trained and uses wave surface elevation measurements gathered by an acoustic Doppler current profiler. The implemented ANN-based rotational speed control has been tested with two different wave conditions and results prove the effectiveness of avoiding the stall effect which improved the power generation.


Author(s):  
Ahmed Samawi Ghthwan ◽  
Abdulrasul A. Al-hayder ◽  
Ali Shaban Hassooni

Transporting industry is having an important influence on the nations’ progress. The states that having long shoreline are taking advantage of their locations in using sea transportations which is more economical than other types of transportations. One of the most economical marine transport is the diesel fueling engines. This paper is to optimize the PID controller to control the speed of the engine overcoming the navigation environmental changes such as waves, winds and other effective external factors as well as the vessel internal changes such as the shipment load, equipment’s conditions …etc. PID is optimized through the optimum selection of its parameters (KP, KI and KD). A Simulink/MatLab model of the system is designed for this purpose. The Hybrid IWOPSO (HIWOPSO) algorithm is used for finding the optimum values of the PID parameters. The engine step response with these parameters is compared to the responses with those obtained by the IWO and PSO besides the Fuzzy Logic Control (FLC).


IEEE Access ◽  
2020 ◽  
Vol 8 ◽  
pp. 45853-45873 ◽  
Author(s):  
Fares M'zoughi ◽  
Izaskun Garrido ◽  
Aitor J. Garrido ◽  
Manuel De la Sen

2018 ◽  
Vol 18 (2) ◽  
pp. 75
Author(s):  
Rizqi Andry Ardiansyah ◽  
Edwar Yazid

Controlling the rotational speed of brushless DC (BLDC) motor is an essential task to improve the transient and the steady state performances under loaded condition. Rotational speed control of BLDC motor using genetic algorithm optimized proportional-derivative (PD) controller to form what the so-called the genetic algorithm-PD (GA-PD) controller is proposed in this paper. Control system is realized in a microcontroller namely a 16MHz Atmega2560 with an absolute encoder as a position sensor. The effectiveness of the GA-PD controller is tested under constant and varying step functions with the Ziegler-Nichols-PD (ZN-PD) controller as a benchmark. Experimental results show that the GA-PD controller has slower speed than the ZN-PD controller, but the latter has overshoot and small oscillations during its steady state condition as a consequent of having a fast rise time.


Open Physics ◽  
2018 ◽  
Vol 16 (1) ◽  
pp. 668-674 ◽  
Author(s):  
Liancheng Zhang ◽  
Guibin Zhang ◽  
John Spillian

AbstractRotary steering systems are cutting-edge, intelligent oil drilling and steering equipment developed at the end of the twentieth century. The core function of the bit pointing rotary steering system is to control the eccentric shaft with bit pointing function to track the outer drill collar for reverse rotation [1]. When the relative speed thereof is offset, the mandrel tool face remains stationary, and the directive function of the drill bit is realized [2]. Therefore, it is important to precisely control mandrel rotational speed and make it follow the outer drill collar to conduct face-to-face rotation at all times. A double closed loop control method for realizing rotational speed loop and position loop through controlling mandrel rotational speed is proposed in this paper. Relative rotational speed of drill bit shaft (or mandrel) and drill collar of zero can be realized within the shortest time, thereby realizing rapid and precise rotational speed tracking. Relative positions of mandrel and drill collar at several angles on 360° circumferences, thereby proving the feasibility of the method. The method can provide a technical reference and basis for prototype production of directional rotary steering system [3].


Energies ◽  
2018 ◽  
Vol 11 (11) ◽  
pp. 2989 ◽  
Author(s):  
Khaoula Ghefiri ◽  
Aitor Garrido ◽  
Eugen Rusu ◽  
Soufiene Bouallègue ◽  
Joseph Haggège ◽  
...  

Energy originating in tidal and ocean currents appears to be more intense and predictable than other renewables. In this area of research, the Tidal Stream Generator (TSG) power plant is one of the most recent forms of renewable energy to be developed. The main feature of this energy converter is related to the input resource which is the tidal current speed. Since its behaviour is variable and with disturbances, these systems must be able to maintain performance despite the input variations. This article deals with the design and control of a tidal stream converter system. The Fuzzy Gain Scheduling (FGS) technique is used to control the blade pitch angle of the turbine, in order to protect the plant in the case of a strong tidal range. Rotational speed control is investigated by means of the back-to-back power converters. The optimal speed is provided using the Maximum Power Point Tracking (MPPT) strategy to harness maximum power from the tidal speed. To verify the robustness of the developed methods, two scenarios of a disturbed tidal resource with regular and irregular conditions are considered. The performed results prove the output power optimization and adaptive change of the pitch angle control to maintain the plant within the tolerable limits.


Sign in / Sign up

Export Citation Format

Share Document