skeletal muscle injury
Recently Published Documents


TOTAL DOCUMENTS

294
(FIVE YEARS 69)

H-INDEX

38
(FIVE YEARS 5)

2022 ◽  
Vol 12 ◽  
Author(s):  
Ying Xin ◽  
Yifeng Zhang ◽  
Simin Deng ◽  
Xinqun Hu

Vagus nerve stimulation (VNS) has a protective effect on distal organ injury after ischemia/reperfusion (I/R) injury. We aimed to investigate the protective efficacy of VNS on hepatic I/R injury-induced acute skeletal muscle injury and explore its underlying mechanisms. To test this hypothesis, male Sprague-Dawley rats were randomly divided into three groups: sham group (sham operation, n = 6); I/R group (hepatic I/R with sham VNS, n = 6); and VNS group (hepatic I/R with VNS, n = 6). A hepatic I/R injury model was prepared by inducing hepatic ischemia for 1 h (70%) followed by hepatic reperfusion for 6 h. VNS was performed during the entire hepatic I/R process. Tissue and blood samples were collected at the end of the experiment for biochemical assays, molecular biological preparations, and histological examination. Our results showed that throughout the hepatic I/R process, VNS significantly reduced inflammation, oxidative stress, and apoptosis, while significantly increasing the protein levels of silent information regulator 1 (SIRT1) and decreasing the levels of acetylated forkhead box O1 and Ac-p53, in the skeletal muscle. These data suggest that VNS can alleviate hepatic I/R injury-induced acute skeletal muscle injury by suppressing inflammation, oxidative stress, and apoptosis, potentially via the SIRT1 pathway.


2022 ◽  
pp. 104477
Author(s):  
Jing Wei ◽  
Yuhang Huan ◽  
Ziqi Heng ◽  
Chenyang Zhao ◽  
Lulu Jia ◽  
...  

2021 ◽  
Vol 23 (1) ◽  
pp. 429
Author(s):  
Victor Lamin ◽  
Joseph Verry ◽  
Isaac Eigner-Bybee ◽  
Jordan D. Fuqua ◽  
Thomas Wong ◽  
...  

Both Type 1 diabetes mellitus (DM1) and type 2 diabetes mellitus (DM2) are associated with an increased risk of limb amputation in peripheral arterial disease (PAD). How diabetes contributes to poor PAD outcomes is poorly understood but may occur through different mechanisms in DM1 and DM2. Previously, we identified a disintegrin and metalloproteinase gene 12 (ADAM12) as a key genetic modifier of post-ischemic perfusion recovery. In an experimental PAD, we showed that ADAM12 is regulated by miR-29a and this regulation is impaired in ischemic endothelial cells in DM1, contributing to poor perfusion recovery. Here we investigated whether miR-29a regulation of ADAM12 is altered in experimental PAD in the setting of DM2. We also explored whether modulation of miR-29a and ADAM12 expression can improve perfusion recovery and limb function in mice with DM2. Our result showed that in the ischemic limb of mice with DM2, miR-29a expression is poorly downregulated and ADAM12 upregulation is impaired. Inhibition of miR-29a and overexpression of ADAM12 improved perfusion recovery, reduced skeletal muscle injury, improved muscle function, and increased cleaved Tie 2 and AKT phosphorylation. Thus, inhibition of miR-29a and or augmentation of ADAM12 improves experimental PAD outcomes in DM2 likely through modulation of Tie 2 and AKT signalling.


Author(s):  
Ali Liaquat ◽  
Khan Adnan ◽  
Alhatou Mohammad ◽  
Elalamy Osama ◽  
Canibano Beatriz ◽  
...  

Life Sciences ◽  
2021 ◽  
pp. 120160
Author(s):  
Tianzheng Yu ◽  
Jacob Dohl ◽  
Yu Min Park ◽  
LaVerne L. Brown ◽  
Rebecca B. Costello ◽  
...  

2021 ◽  
Author(s):  
Jonas Brorson Jensen ◽  
Ole Lindgaard Dollerup ◽  
Andreas Buch Moeller ◽  
Tine Borum Billeskov ◽  
Emilie Dalbram ◽  
...  

Background Maintenance and regeneration of functional skeletal muscle are dependent on a sufficient pool of muscle stem cells (MuSCs). During ageing there is a functional decline in this cellular pool which influences the regenerative capacity of skeletal muscle. Preclinical evidence have suggested that Nicotinamide Riboside (NR) and Pterostilbene (PT) can improve muscle regeneration e.g. by increasing MuSC function. The objective of the present study was to investigate if NRPT supplementation promotes skeletal muscle regeneration after muscle injury in elderly humans by improved recruitment of MuSCs. Methods In a randomized, double-blinded, placebo-controlled trial, 32 elderly men and women (55-80 yr) received daily supplementation with either NRPT (1000 mg NR + 200 mg PT) or matched placebo. Two weeks after initiation of supplementation, a skeletal muscle injury was applied in the vastus lateralis part of the quadriceps femoris muscle by electrically induced eccentric muscle work in a dynamometer. Skeletal muscle biopsies were obtained pre, 2h, 2, 8, and 30 days post injury. The main outcome of the study was change in MuSC content 8 days post injury. Results 31 enrolled subjects completed the entire protocol. The muscle work induced a substantial skeletal muscle injury in the study participants and was associated with release of myoglobin and creatine kinase, muscle soreness, tissue edema, and a decrease in muscle strength. MuSC content increased by 107% 8 days post injury (p= 0.0002) but with no effect of NRPT supplementation (p=0.58 for supplementation effect). MuSC proliferation and cell size revealed a large demand for recruitment post injury but was not affected by NRPT. Furthermore, histological analyses of muscle fiber area, internal nuclei and embryonic Myosin Heavy Chain showed no effect of NRPT supplementation. Conclusion Daily supplementation with 1000 mg NR + 200 mg PT is safe but does not improve recruitment of the MuSC pool or other measures of muscle recovery in response to injury or subsequent regeneration in elderly subjects.


Phytomedicine ◽  
2021 ◽  
pp. 153791
Author(s):  
Maria Sikorska ◽  
Małgorzata Dutkiewicz ◽  
Oliwia Zegrocka – Stendel ◽  
Magdalena Kowalewska ◽  
Iwona Grabowska ◽  
...  

2021 ◽  
Vol 27 (3) ◽  
pp. 295-298
Author(s):  
Qing Wang ◽  
Fen Wang

ABSTRACT Introduction Skeletal muscle injuries account for 10% to 50% of treadmill sports injuries. Insulin-like growth factor (IGF) is a family of polypeptides with both insulin-like anabolic and growth-promoting effects. Sports play a vital role in the recovery of skeletal muscle injuries. Objective The paper analyzes the ability of insulin-like growth factor 1 (IGF-1) to repair skeletal muscle injury caused by treadmill exercise. Method We injected drugs under the wound after exercise-induced injury in rats. The control group was injected with saline, and the experimental group was injected with an insulin-like growth factor. We conduct histological and electron microscopic structural analysis of rats, Results: After an injury, the experimental group formed a basal lamina protective film earlier than the control group, activated myoblasts, formed myofilaments, formed myotubes, and fused into muscle fibers earlier than the control group. The healing quality was also better. The experimental group was endogenous. The mRNA content of sex IGF-1 and IGF-2 both increased earlier than the control group. Conclusion Local injection of exogenous insulin-like growth factor-1 can stimulate the proliferation of myoblasts and accelerate the post-traumatic repair process of skeletal muscle caused by treadmill sports. Level of evidence II; Therapeutic studies - investigation of treatment results.


Author(s):  
Caroline Bomfim Lemos da Cruz ◽  
Luis Fernando Sousa Filho ◽  
Diego Alves Lima ◽  
Joyce Izabel de Gois ◽  
Evaleide Diniz de Oliveira

2021 ◽  
Vol 12 ◽  
Author(s):  
Kang Ren ◽  
Liangliang Wang ◽  
Liang Wang ◽  
Qiuxiang Du ◽  
Jie Cao ◽  
...  

Following skeletal muscle injury (SMI), from post-injury reaction to repair consists of a complex series of dynamic changes. However, there is a paucity of research on detailed transcriptional dynamics and time-dependent marker gene expression in the early stages after SMI. In this study, skeletal muscle tissue in rats was taken at 4 to 48 h after injury for next-generation sequencing. We examined the transcriptional kinetics characteristics during above time periods after injury. STEM and maSigPro were used to screen time-correlated genes. Integrating 188 time-correlated genes with 161 genes in each time-related gene module by WGCNA, we finally identified 18 network-node regulatory genes after SMI. Histological staining analyses confirmed the mechanisms underlying changes in the tissue damage to repair process. Our research linked a variety of dynamic biological processes with specific time periods and provided insight into the characteristics of transcriptional dynamics, as well as screened time-related biological indicators with biological significance in the early stages after SMI.


Sign in / Sign up

Export Citation Format

Share Document