screw speed
Recently Published Documents


TOTAL DOCUMENTS

164
(FIVE YEARS 54)

H-INDEX

23
(FIVE YEARS 2)

2021 ◽  
pp. 009524432110588
Author(s):  
Anindya Dutta ◽  
Debjyoti Banerjee ◽  
Anup K. Ghosh

Foams of polypropylene/elastomer blends can often lead to softer foams which may not be desirable every time. Incorporating rigidity to the foams can often be made possible by preferentially crosslinking the elastomer phase prior to blending. Although foamability of polypropylene/elastomer blends has been understood in the scientific community, the influence of the extent of crosslinking in the elastomer phase is not yet understood well. The purpose of this investigation is to identify the influence of the extent of elastomer crosslinking and the blend morphological attributes (achieved by varying screw speed during melt mixing) on foamability of polypropylene/partially crosslinked elastomer blends. Crosslinking of ethylene-acrylic elastomer is carried out using gamma radiation with several doses (0, 12.5, 25, 50 kGy) before melt blending and, subsequently, 10 wt.% of the irradiated elastomers (prior optimized) are mixed with polypropylene in a micro-compounder at three different screw speeds. The microstructure development in blends is characterized by scanning electron microscopy. Frequency sweep rheological analysis is done for selected blends to identify the ease of foamability among the series of blends. Foaming of blends is done with supercritical carbon dioxide in batch mode at three different temperatures. The density reduction along with the microcellular morphology development of blends with foaming is analyzed with the screw speed, the extent of crosslinking, and foaming temperature; furthermore, the individual input parameters (the elastomer domain size, controlled by the screw speed and the extent of crosslinking, controlled by gamma radiation dose) are optimized based on the foam morphology. A uniform and good foamability were achieved at 155 and 160°C for blends with elastomers, irradiated at 12.5 and 25 kGy radiation doses. The lowest density foam (0.37 g/cc) was obtained for polypropylene with 12.5 kGy irradiated crosslinked elastomer mixed at 200 rpm at 160°C foaming temperature. The final elastomer domain dispositions within the foam morphologies are characterized and the plausible foaming mechanism is proposed.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Abida Jabeen ◽  
Haroon Naik ◽  
Nusrat Jan ◽  
Syed Zameer Hussain ◽  
Tawheed Amin ◽  
...  

PurposeThe present research was envisaged with an aim to optimize the system and the product responses for the development of tomato pomace-incorporated corn-based extrudates employing central composite rotatable design and determine its proximate, lycopene, consumer acceptability and storage studies.Design/methodology/approachLycopene-rich extrudates were developed from corn flour blended with different levels of tomato pomace. The independent extrusion variables, namely, feed composition (95:5 to 75:25), feed moisture (12–20%), screw speed (200–600 rpm) and barrel temperature (125–185 °C), were studied to determine their influence on dependent variables, namely, specific mechanical energy, hardness, water solubility index, lateral expansion, water absorption index, bulk density and color.FindingsAll of the quality parameters were significantly (p < 0.05) influenced by independent variables. The regression models obtained for all the responses showed high coefficients of determination (R2 = 0.85–0.95). The optimum conditions for the development of tomato pomace-incorporated corn-based extrudates were feed composition (90:10), feed moisture (14%), screw speed (300 rpm) and barrel temperature (170 °C). The moisture, fat and carbohydrate contents of the extrudates were significantly reduced, whereas protein, ash and fiber were significantly (p < 0.05) enhanced after the incorporation of tomato pomace. Aluminum laminates were found to be the suitable packaging materials for extrudates for a period of 120 days in comparison to high-density polyethylene packages.Originality/valueAs far as the authors could possibly know, scanty literature exists wherein the tomato pomace has been utilized for the development of lycopene-rich corn-based extruded snacks. Such extrudates with significantly higher fiber and lycopene contents than corn flour will serve as a suitable alternative for the development of shelf-stable ready-to-eat extruded snacks.


Materials ◽  
2021 ◽  
Vol 14 (24) ◽  
pp. 7580
Author(s):  
Emil Sasimowski ◽  
Łukasz Majewski ◽  
Marta Grochowicz

The results of comprehensive studies on accelerated (artificial) ageing and biodegradation of polymer biocomposites on PBS matrix filled with raw wheat bran (WB) are presented in this paper. These polymer biocomposites are intended for the manufacture of goods, in particular disposable packaging and disposable utensils, which decompose naturally under the influence of biological agents. The effects of wheat bran content within the range of 10–50 wt.% and extruder screw speed of 50–200 min−1 during the production of biocomposite pellets on the resistance of the products to physical, chemical, and biological factors were evaluated. The research included the determination of the effect of artificial ageing on the changes of structural and thermal properties by infrared spectra (FTIR), differential scanning calorimetry (DSC), and thermogravimetric analysis (TG). They showed structural changes—disruption of chains within the ester bond, which occurred in the composition with 50% bran content as early as after 250 h of accelerated ageing. An increase in the degree of crystallinity with ageing was also found to be as high as 48% in the composition with 10% bran content. The temperature taken at the beginning of weight loss of the compositions studied was also lowered, even by 30 °C at the highest bran content. The changes of mechanical properties of biocomposite samples were also investigated. These include: hardness, surface roughness, transverse shrinkage, weight loss, and optical properties: colour and gloss. The ageing hardness of the biocomposite increased by up to 12%, and the surface roughness (Ra) increased by as much as 2.4 µm at the highest bran content. It was also found that ageing causes significant colour changes of the biocomposition (ΔE = 7.8 already at 10% bran content), and that the ageing-induced weight loss of the biocomposition of 0.31–0.59% is lower than that of the samples produced from PBS alone (1.06%). On the other hand, the transverse shrinkage of moldings as a result of ageing turned out to be relatively small, at 0.05%–0.35%. The chemical resistance of biocomposites to NaOH and HCl as well as absorption of polar and non-polar liquids (oil and water) were also determined. Biodegradation studies were carried out under controlled conditions in compost and weight loss of the tested compositions was determined. The weight of samples made from PBS alone after 70 days of composting decreased only by 4.5%, while the biocomposition with 10% bran content decreased by 15.1%, and with 50% bran, by as much as 68.3%. The measurements carried out showed a significant influence of the content of the applied lignocellulosic fillers (LCF) in the form of raw wheat bran (WB) on the examined properties of the biocompositions and the course of their artificial ageing and biodegradation. Within the range under study, the screw speed of the extruder during the production of biocomposite pellets did not show any significant influence on most of the studied properties of the injection mouldings produced from it.


Polymers ◽  
2021 ◽  
Vol 13 (24) ◽  
pp. 4299
Author(s):  
Bin Tang ◽  
Yaoyu Yue ◽  
Zipeng Gai ◽  
Yao Huang ◽  
Ying Liu ◽  
...  

With the application of biomimetic shark skin microstructures with hydrophobicity in microfluidics, sensors and self-cleaning materials, microstructure processing methods are increasing. The preparation process has higher requirements for processing cost and efficiency. In this paper, linear low-density polyethylene (LLDPE) hydrophobic films were prepared with the help of melt fracture phenomenon. The equipment is a self-made single screw extruder. By adjusting the process parameters, the biomimetic shark skin structured LLDPE films with good hydrophobic property can be obtained. The surface microstructure shape of the product is related to kinds of additive, die temperature and screw speed. When AC5 was selected as an additive, the optimal processing parameter was found to be 160 °C die temperature and 80 r/min screw speed. A contact angle of 133° was obtained in this situation. In addition, the influences of die temperature and screw speed on the size of shark skin structure were also systematically investigated in this paper. It was found that the microstructure surface with hierarchical roughness had a better hydrophobic property.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Shingo Takada ◽  
Toru Suzuki ◽  
Yoshihiro Takebayashi ◽  
Takumi Ono ◽  
Satoshi Yoda

AbstractRandom forest regression was applied to optimize the melt-blending process of polyphenylene sulfide (PPS) with poly(ethylene-glycidyl methacrylate-methyl acrylate) (E-GMA-MA) elastomer to improve the Charpy impact strength. A training dataset was constructed using four elastomers with different GMA and MA contents by varying the elastomer content up to 20 wt% and the screw rotation speed of the extruder up to 5000 rpm at a fixed barrel temperature of 300 °C. Besides the controlled parameters, the following measured parameters were incorporated into the descriptors for the regression: motor torque, polymer pressure, and polymer temperatures monitored by infrared-ray thermometers installed at four positions (T1 to T4) as well as the melt viscosity and elastomer particle diameter of the product. The regression without prior knowledge revealed that the polymer temperature T1 just after the first kneading block is an important parameter next to the elastomer content. High impact strength required high elastomer content and T1 below 320 °C. The polymer temperature T1 was much higher than the barrel temperature and increased with the screw speed due to the heat of shear. The overheating caused thermal degradation, leading to a decrease in the melt viscosity and an increase in the particle diameter at high screw speed. We thus reduced the barrel temperature to keep T1 around 310 °C. This increased the impact strength from 58.6 kJ m−2 as the maximum in the training dataset to 65.3 and 69.0 kJ m−2 at elastomer contents of 20 and 30 wt%, respectively.


2021 ◽  
Vol 18 (4) ◽  
pp. 9-17
Author(s):  
Ritu Chaudhary ◽  
Sushant Upadhyaya ◽  
Vikas Kumar Sangal

Due to the increased socio-economic development, the manufacturing of different products based on various polymers for different applications such as space crafts, airplanes, automobiles, boats, and sports equipment are increasing continuously. This huge increase in solid polymer commodities is also creating the extravagant quantity of solid waste polymers (SWPs) due to their non-degradable characteristics. These SWPs, for example, high-density polyethylene (HDPE), polypropylene (PP), low-density polyethylene (LDPE), and nylon, etc., are used frequently in various applications and create new challenges to the industries, government, as well as end-users for systematic waste recycling/recovery in an eco-friendly manner. Moreover, in this modernisation era, almost all marble industries are also facing a huge problem as marble slurry (MS) yields a great burden not only due to its limited degradability characteristics but also wider environmental hazard towards water bodies, and rivers. Fine particles in the range size of 45-300 micron in the MS create air pollution which in turn increases breathing problems. Moreover, it also creates an ecological adverse impact on soil fertility and reduces the percolation rate of rain water which in turn reduces the recharging of groundwater. Therefore, keeping in view the above facts, the simultaneous recycling of HDPE, PP and marble slurry is adopted through single screw extrusion in order to reduce the burden on the environment. Moreover, the effect of various process parameters viz barrel temperature, screw speed (rpm), feed composition, and grain size of PP and HDPE on extrudate output was envisaged. It was found that the extrudate output increases steeply on increasing the average barrel temperature from 100 to 120°C and linearly with screw speed range from 65 to 85 rpm. The effect of grain size had shown decreasing trend in throughput whereas on increasing the polymer content in the feed, throughput was found to be enhanced. Additives such as HPMC were found to be effective when used in synergy with HDPE and PP along with MS. The extrudate throughput was found to be a maximum of 33.01 g/minute at 120°C, 85 screw rpm, 1.40-grain size underfeed with equal proportionate of HDPE/PP with 2% HPMC and 8% MS. This clearly opens the ways for proper utilization of HDPE, PP and MS waste by extrusion and provides the environmental protection solution by utilizing these polluted materials in the fabrication of value-added products through extrusion.


2021 ◽  
Vol 10 (2) ◽  
pp. 296-310
Author(s):  
Anuj Saklani ◽  
Ravinder Kaushik ◽  
Krishan Kumar

The present study was conducted to develop non-cereal starch extruded products. The effects of feed moisture (15-21%), temperature (130-170 °C) and screw speed (120-160 rpm) were evaluated on the physical and functional properties of extruded snacks using response surface methodology. Feed moisture and screw speed increased the bulk density and hardness of extruded snacks. Significant decreases in water absorption index and increases in water solubility index were observed with increases in extrusion temperature. The best conditions were determined by numerical optimization. The optimized value for non-cereal snacks for feed moisture is 18.22%, temperature 155.96 °C, screw speed 142.75 rpm and, desirability is 0.75. Verification of results showed decent agreement between the responses of experimental values at certain optimum conditions and the predicted values.


Author(s):  
Byreddy Naveena ◽  
Mohan Singh

Extrusion cooking is a high temperature short time multivariable unit operation. In this study, response surface methodology (RSM) was used to evaluate the effect of feed parameters i.e., feed moisture (8-16%), blend ratio of sorghum:barley:bengal gram, (70:15:15 to 50:35:15) and machine parameters of twin screw extruder i.e., barrel temperature (120-200oC) and screw speed (120-200 rpm) on physical properties of extrudates i.e., mass flow rate, bulk density and moisture content. The results showed that maximum mass flow rate (0.974 g/s) was observed with the blend ratio 60:25:15, having 8 percent moisture (w.b) extruded at 160oC barrel temperature and a screw speed of 160 rpm. The bulk density of extrudates was found minimum (0.08 g/cc) at 10% moisture content, 65:20:15 blend ratio, 180oC barrel temperature and 180 rpm screw speed and the moisture content of extrudates was found minimum (4.74%) at 10% moisture content, 55:30:15 blend ratio, 180oC barrel temperature and 140 rpm screw speed.


Foods ◽  
2021 ◽  
Vol 10 (10) ◽  
pp. 2397
Author(s):  
Izalin Zahari ◽  
Ferawati Ferawati ◽  
Jeanette K. Purhagen ◽  
Marilyn Rayner ◽  
Cecilia Ahlström ◽  
...  

Rapeseed protein is not currently utilized for food applications, although it has excellent physicochemical, functional, and nutritional properties similar to soy protein. Thus, the goal of this study was to create new plant-based extrudates for application as high-moisture meat analogs from a 50:50 blend of rapeseed protein concentrate (RPC) and yellow pea isolate (YPI) using high-moisture-extrusion (HME) cooking with a twin-screw extruder to gain a better understanding of the properties of the protein powders and resulting extrudates. The effects of extrusion processing parameters such as moisture content (60%, 63%, 65%, 70%), screw speed (500, 700, and 900 rpm), and a barrel temperature profile of 40–80–130–150 °C on the extrudates’ characteristics were studied. When compared to the effect of varying screw speeds, targeted moisture content had a larger impact on textural characteristics. The extrudates had a greater hardness at the same moisture content when the screw speed was reduced. The specific mechanical energy (SME) increased as the screw speed increased, while increased moisture content resulted in a small reduction in SME. The lightness (L*) of most samples was found to increase as the target moisture content increased from 60% to 70%. The RPC:YPI blend was equivalent to proteins produced from other sources and comparable to the FAO/WHO standard requirements.


2021 ◽  
Vol 4 (2) ◽  
pp. 177
Author(s):  
Nesho Georgiev Toshkov ◽  
Ventsislav Nenov Nenov ◽  
Bojidar Bozadjiev ◽  
Naiden Delchev ◽  
Erik Valov

Extrusion of wheat semolina and milled cocoa shells using a single screw extruder Brabender 20DN was carried out. Full factorial experiment 23 was used to investigate the effect of the quantity of cocoa shells, moisture of the material and temperature of the matrix on the density and expansion index of extrudates. Feed screw speed and screw speed were fixed at 30 and 200 rpm, respectively. Compression ratio of the screw was 4:1. Expansion index values range between 2.0 and 3.36 and a density between 0.099 and 0.223 g/cm3. The increase in moisture content and quantity of cocoa shells leads to a decrease expansion index, while density of extrudates an increase.


Sign in / Sign up

Export Citation Format

Share Document