channel belt
Recently Published Documents


TOTAL DOCUMENTS

78
(FIVE YEARS 25)

H-INDEX

14
(FIVE YEARS 2)

2022 ◽  
Vol 10 (1) ◽  
pp. 43-64
Author(s):  
Marc J. P. Gouw ◽  
Marc P. Hijma

Abstract. Despite extensive research on alluvial architecture, there is still a pressing need for data from modern fluvio-deltaic environments. Previous research in the fluvial-dominated proximal and central Rhine–Meuse delta (the Netherlands) has yielded clear spatial trends in alluvial architecture. In this paper, we include the backwater length to establish architectural trends from apex to shoreline. Channel-belt sand body width / thickness ratios and interconnectedness were determined, and the proportions of fluvial channel-belt deposits, fluvial overbank deposits, organics and intertidal deposits were calculated for the complete fluvio-deltaic wedge based on high-resolution geological cross sections. It was found that the average width / thickness ratio of channel-belt sand bodies in the proximal delta is 5 times higher than in the distal delta. Other down-valley trends include an 80 % decrease in the channel deposit proportion (CDP) and a near-constant proportion of overbank deposits. Additionally, interconnectedness in the proximal delta is 3 times higher than in the distal delta. Based on the Rhine–Meuse dataset, we propose a linear empirical function to model the spatial variability of CDP. It is argued that this relationship is driven by four key factors: channel lateral-migration rate, channel-belt longevity, creation of accommodation space and inherited floodplain width. Additionally, it is established that the sensitivity of CDP to changes in the ratio between channel-belt sand body width and floodplain width (normalized channel-belt sand body width) varies spatially and is greatest in the central and distal delta. Furthermore, the proportion of fluvial channel-belt sands is generally an appropriate proxy for the total sand content of fluvio-deltaic successions, although its suitability as a total sand indicator rapidly fades in the distal delta. Characteristics of the backwater zone of the Rhine–Meuse delta are (1) sand body width / thickness ratios that are lower as a consequence of channel narrowing (not deepening), (2) a rapid increase and then a drop in the organic proportion, (3) an increase in the total sand proportion towards the shoreline, and (4) a drop in the connectedness ratio. For this paper, unique high-resolution quantitative data and spatial trends of the alluvial architecture are presented for an entire delta, providing data that can be used to further improve existing fluvial stratigraphy models.


2021 ◽  
Vol 1 (2) ◽  
pp. 103-110
Author(s):  
Iqbal Fardiansyah ◽  
◽  
Agung Wiyono ◽  
Abdullah Faisal Talib

Menggala Formation has been long recognized as high quality oil bearing sand and favorable reservoir in Central Sumatera Basin (CSB). Regionally, this formation is unique in characteristic, distribution and has not been thoroughly evaluated during early exploration and development. This paper aims to explain elaborately the new stratigraphic feature and regional paleogeography model of Menggala Formation throughout Balam grabens by integrating cores, biostratigraphy, water salinity, well log and 2D seismic image to better understand regional stratigraphic play concept. Lower Menggala Formation in the northern Rokan Block has been clearly identified as the large scale of fluvial channel system that deposited parallel with Paleogene border fault remnants during early post-rift phase (22-25 million years ago). The fluvial channel belt is characterized by 4 to 5 km width, thick multi stacking fluvial sequence in the north and gradually change into river mouth sediment in the south. These sediments accumulated in depression area and also proven as huge productive reservoir in many fields. The north-south trending channel axis and geobodies confirmed by paleo bathymetric zonation, water salinity and 2D seismic image. The new paleogeography model helps better understanding of the regional stratigraphic concept of Menggala Formation across Balam grabens. In addition, this conceptual model also leads to strengthen the future exploration and development play concept within study area in Rokan Block.


2021 ◽  
Author(s):  
Melissa Mirino ◽  
Matthew Balme ◽  
Peter Fawdon ◽  
Peter Grindrod
Keyword(s):  

2021 ◽  
Author(s):  
Marc J. P. Gouw ◽  
Marc P. Hijma

Abstract. Despite extensive research on alluvial architecture, there is still a pressing need for data from modern fluvio-deltaic environments. Previous research in the fluvial-dominated proximal and central Rhine-Meuse delta (The Netherlands) has yielded clear spatial trends in alluvial architecture. In this paper, we include the backwater length to establish architectural trends from apex to shoreline. Channel-belt sand body width/thickness ratios and interconnectedness were determined and the proportions of fluvial channel-belt deposits, fluvial overbank deposits, organics and intertidal deposits were calculated for the complete fluvio-deltaic wedge, based on high-resolution geological cross-sections. It was found that the average width/thickness ratio of channel-belt sand bodies in the proximal delta is five times higher than in the distal delta. Other down-valley trends include an 80 %-decrease of the channel deposit proportion (CDP) and a near-constant proportion of overbank deposits. Additionally, interconnectedness in the proximal delta is three times higher than in the distal delta. Based on the Rhine-Meuse dataset, the authors propose a linear empirical function to model the spatial variability of CDP. It is argued that this relationship is driven by four key factors that change along stream: channel lateral-migration rate, channel-belt longevity, creation of accommodation space and inherited flood-plain width. Additionally, it is established that the sensitivity of CDP to changes in the ratio between channel-belt sand body width and flood-plain with, (normalised channel-belt sand body width) varies spatially and is greatest in the central and distal delta. Also, the proportion of fluvial channel-belt sands is generally an appropriate proxy for the total sand content of fluvio-deltaic successions, albeit that its suitability as a total-sand indicator rapidly fades in the distal delta. With this paper, unique high-resolution quantitative data and spatial trends on the alluvial architecture are available for an entire delta, hereby providing a dataset that can be used to further improve existing fluvial stratigraphy models.


Geosciences ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 210
Author(s):  
Tomáš Matys Grygar ◽  
Jitka Elznicová ◽  
György Sipos ◽  
Tímea Kiss

The development of the Ohře River near Žatec between the Late Glacial Maximum (LGM) and present time was studied to obtain its natural trajectory and thus to understand the role of human impact on floodplain development. The study was based on geomorphic research, sampling and dating fluvial sediments by optically stimulated luminescence (OSL) and anthropogenic contamination by Sn since 16th century. During the LGM and the Pleistocene/Holocene transition (P/H), the river valley was shaped by large, incising meanders creating the entire valley floor. The Holocene river, due to decreased channel forming discharges, only slowly continued the LGM and P/H trajectory by cut-offs of the large palaeomeander necks and channel belt narrowing and incision. The last Holocene incision step was likely triggered by hydrological extremes of the Little Ice Age. The LGM and P/H Ohře River consequently changed from meandering to low sinuous, incised in the valley floor; this incision was completed by river engineering in the 20th century. The Ohře River development can thus be rationalised neither by traditional terrace-step formation model nor by model of the Anthropogenic aggradation.


Geology ◽  
2021 ◽  
Author(s):  
Alistair T. Hayden ◽  
Michael P. Lamb ◽  
Alexander J. Carney

The surface of Mars contains abundant sinuous ridges that appear similar to river channels in planform, but they stand as topographic highs. Ridges have similar curvature-to-width ratios as terrestrial meandering rivers, which has been used to support the hypothesis that ridges are inverted channels that directly reflect channel geometry. Anomalously wide ridges, in turn, have been interpreted as evidence for larger rivers on Mars compared to Earth. However, an alternate hypothesis is that ridges are exhumed channel-belt deposits—a larger zone of relatively coarse-grained deposits formed from channel lateral migration and aggradation. Here, we measured landform wavelength, radius of curvature, and width to compare terrestrial channels, terrestrial channel belts, and martian ridges. We found that all three landforms follow similar scaling relations, in which ratios of radius of curvature to width range from 1.7 to 7.3, and wavelength-to-width ratios range from 5.8 to 13. We interpret this similarity to be a geometric consequence of a sinuous curved line of finite width. Combined with observations of ridge-stacking patterns, our results suggest that wide ridges on Mars could indicate fluvial channel belts that formed over significant time rather than anomalously large rivers.


2021 ◽  
Author(s):  
Luca Forti ◽  
Andrea Pezzotta ◽  
Eleonora Regattieri ◽  
Guido Stefano Mariani ◽  
Filippo Brandolini ◽  
...  

<p>Located along the Tigris River in the Kurdistan Region of Iraq (KRI), the Mosul Dam reservoir is the second biggest dam of the Near East, and represents an important water storage for local human activities. The Dam was built between 1981 and 1988 north of the village of Eski Mosul; along this part of the Tigris River several archaeological sites were inundated. Analysis of historical images derived from Declassified Corona satellite acquired between December 1967 and August 1968 reveals seasonal changes of the Tigris riverbed, shifting across the hydrological year from meandering to anastomosing. The geomorphological mapping was carried out on the December 1967 and. in August 1968, Corona images were taken, in order to estimate the modification of several fluvial geomorphological elements such as floodplain and point, middle and longitudinal bars. Here, such evidence is compared with Landsat data collected between the 1990ies and today, in order to detect the first phases of filling of the basin and the control of inherited Tigris channel belt over the reservoir. Moreover, we also noticed an influence of the ancient Tigris course on is recent insertion into the lake. Our work permitted to reconstruct the ancient fluvial landscape below the Mosul Dam Lake, and its evolution in response to seasonal variation of the discharge.</p>


2020 ◽  
Vol 8 (4) ◽  
pp. SR27-SR31
Author(s):  
Karelia La Marca Molina ◽  
Heather Bedle ◽  
Jerson Tellez

The Taranaki Basin lies in the western portion of New Zealand, onshore and offshore. It is a Cretaceous rift basin that is filled with up to approximately 10 km thick deposits from marine to deepwater depositional environments from the Cretaceous (approximately 93 ma) to the Neogene (approximately 15 ma). This basin underwent important tectonic events that resulted in large-scale features such as faults and folds and the deposition of turbidites such as channels and channel belts. These features easily are recognizable in seismic data. When analyzing the offshore 3D Pipeline data set, we recognized a peculiar fault-like feature with large-scale dimensions (approximately 15 km long and approximately 1 km wide) within the sequence. The alignment was perpendicular to the direction of deposition in the basin (southeast–northwest) as identified by previous studies and subparallel to the main structures in the area (southwest–northeast). We interpreted the seismic character of the funny-looking thing (FLT) likely as (1) a fault, (2) a fold, or (3) a large channel belt within the basin. We use seismic attributes such as coherence (Sobel filter), dip, cosine of phase, and curvature to characterize this feature geomorphologically. The geologic background of the area and analog settings aided in understanding and distinguishing the nature of this large structure. Monocline examples in seismic data are rare to find, and we want to show how to avoid misinterpretations. Geological feature: Fault-bend fold or large-amplitude fold (possibly monocline) Seismic appearance: Large, discontinuous, high-variance feature Alternative interpretations: Fault, fold Features with a similar appearance: Fault, fold, wide straight channel belt (time or horizon slice) Formation: Rift sequence of the Taranaki Basin Age: Eocene Location: Taranaki Basin, Western offshore New Zealand Seismic data: Provided by New Zealand Petroleum and Minerals Contributors: Karelia La Marca, Heather Bedle, Jerson Tellez; School of Geosciences; University of Oklahoma, Norman, OK, USA Analysis tool: 3D reflection seismic, geometric seismic attributes


Sign in / Sign up

Export Citation Format

Share Document