topographic inversion
Recently Published Documents


TOTAL DOCUMENTS

15
(FIVE YEARS 5)

H-INDEX

5
(FIVE YEARS 0)

2021 ◽  
Author(s):  
Anna Gülcher ◽  
Laurent Montési ◽  
Taras Gerya ◽  
Jessica Munch

In the absence of global plate tectonics, mantle convection and plume-lithosphere interaction are the main drivers of surface deformation on Venus. Among documented tectonic structures, circular volcano-tectonic features known as coronae may be the clearest surface manifestations of mantle plumes and hold clues to the global Venusian tectonic regime. Yet, the exact processes underlying coronae formation and the reasons for their diverse morphologies remain controversial. Here, we use 3D thermomechanical numerical simulations of impingement of a thermal mantle plume upon the Venusian lithosphere to assess the origin and diversity of large Venusian coronae. The ability of the mantle plume to penetrate into the Venusian lithosphere results in four main outcomes: lithospheric dripping, short-lived subduction, embedded plume and plume underplating. During the first three scenarios, plume penetration and spreading induce crustal thickness variations that eventually lead to a final topographic isostasy-driven topographic inversion from circular trenches surrounding elevated interiors to raised rims surrounding inner depressions, as observed on many Venusian coronae. Different corona structures may represent not only different styles of plume-lithosphere interactions, but also different stages in evolution. A morphological analysis of large existing coronae leads to the conclusion that least 37 large coronae (including the largest Artemis corona) are active, providing evidence for widespread ongoing plume activity on Venus.


Author(s):  
Emmanuel Gabet

The Table Mountains, a flat-topped series of ridges capped by a 10.4 Ma latite flow in the Stanislaus River watershed, are considered to be evidence for late Cenozoic uplift-driven landscape rejuvenation in the northern Sierra Nevada range (California, USA). The commonly accepted theory for the formation of these mesas posits that the latite flowed and cooled within a bedrock paleovalley and, since then, the surrounding landscape has eroded away, leaving behind the volcanic deposit as a ridge. Although this theory is accepted by many, it has not been thoroughly tested. In this study, I examine a series of geological cross-sections extracted along the length of the latite deposit to determine whether the evidence supports the existence of bedrock valley walls on both sides of the 10.4 Ma flow. I find that the presence of older Cenozoic deposits adjacent to the latite flow precludes the possibility that the flow would have been constrained within a bedrock valley. Moreover, the cross-section from an 1865 report that has been offered as evidence of topographic inversion (and subsequently reproduced in numerous publications) does not accurately represent the topography at that site. I conclude that there is no evidence that the bedrock topography has been inverted and that instead, the latite flowed within a channel cut into underlying Cenozoic deposits, which have since mostly eroded away. This study, therefore, refutes the hypothesis that the Stanislaus River watershed was rejuvenated in the late Cenozoic and challenges the claim for recent significant uplift of the region.


2020 ◽  
Vol 7 ◽  
pp. 69-96
Author(s):  
Bart Kowallis ◽  
Douglas Sprinkel ◽  
Eric Christiansen ◽  
Skylor Steed ◽  
David Wheatley

A stratigraphic layer containing rhyolite cobbles and boulders in the Middle Jurassic Carmel Formation of southern Utah represents a singular, unusual event in the otherwise low-energy sedimentation of this formation. A laser-fusion, single-crystal 40Ar/39Ar age of 171.73 ± 0.19 Ma obtained from sanidine in one of the clasts is about 8 m.y. older than a zircon U-Pb age obtained on a fallout tuff from the sediments surrounding the clasts (163.9 ± ~3.3 Ma). The volcanic clasts are poorly-welded rhyolite ignimbrites that may have been deposited as much as 200 km from the eruptive center, perhaps along pre-existing valleys. The tuff deposits then remained in place for several million years during which time they were subjected to weathering, alteration, and perhaps topographic inversion, creating mesas capped with tuff underlain by soft Middle Jurassic silt and mud. Triggered by unusual rainfall or earthquakes, debris flows carried the clasts a few 10s of kilometers from their outcrops to the depositional site. Earlier work proposed that the Middle Jurassic arc was a low-standing, arc-graben. If this was the case, then the tectonic setting was likely similar to the modern Central American arc in the vicinity of Nicaragua where tuffs erupted from a low-standing arc deposited onto an adjacent highland and were then eroded by streams flowing to the east onto a fluvial plain that is near the sea.


2016 ◽  
Vol 62 (233) ◽  
pp. 467-485 ◽  
Author(s):  
SARAH THOMPSON ◽  
DOUGLAS I. BENN ◽  
JORDAN MERTES ◽  
ADRIAN LUCKMAN

ABSTRACTThe ablation areas of debris-covered glaciers typically consist of a complex mosaic of surface features with contrasting processes and rates of mass loss. This greatly complicates glacier response to climate change, and increases the uncertainty of predictive models. In this paper we present a series of high-resolution DEMs and repeat lake bathymetric surveys on Ngozumpa Glacier, Nepal, to study processes and patterns of mass loss on a Himalayan debris-covered glacier in unprecedented detail. Most mass loss occurs by melt below supraglacial debris, and melt and calving of ice cliffs (backwasting). Although ice cliffs cover only ~5% of the area of the lower tongue, they account for 40% of the ablation. The surface debris layer is subject to frequent re-distribution by slope processes, resulting in large spatial and temporal differences in debris-layer thickness, enhancing or inhibiting local ablation rates and encouraging continuous topographic inversion. A moraine-dammed lake on the lower glacier tongue (Spillway Lake) underwent a period of rapid expansion from 2001 to 2009, but later experienced a reduction of area and volume as a result of lake level lowering and sediment redistribution. Rapid lake growth will likely resume in the near future, and may eventually become up to 7 km long.


2010 ◽  
Vol 74 (1) ◽  
pp. 82-90 ◽  
Author(s):  
B. Brandon Curry ◽  
Michael E. Konen ◽  
Timothy H. Larson ◽  
Catherine H. Yansa ◽  
Keith C. Hackley ◽  
...  

AbstractThe “type” DeKalb mounds of northeastern Illinois, USA (42.0°N, −88.7°W), are formed of basal sand and gravel overlain by rhythmically bedded fines, and weathered sand and gravel. Generally from 2 to 7 m thick, the fines include abundant fossils of ostracodes and uncommon leaves and stems of tundra plants. Rare chironomid head capsules, pillclam shells, and aquatic plant macrofossils also have been observed.Radiocarbon ages on the tundra plant fossils from the “type” region range from 20,420 to 18,560 cal yr BP. Comparison of radiocarbon ages of terrestrial plants from type area ice-walled lake plains and adjacent kettle basins indicate that the topographic inversion to ice-free conditions occurred from 18,560 and 16,650 cal yr BP. Outside the “type” area, the oldest reliable age of tundra plant fossils in DeKalb mound sediment is 21,680 cal yr BP; the mound occurs on the northern arm of the Ransom Moraine (−88.5436°W, 41.5028°N). The youngest age, 16,250 cal yr BP, is associated with a mound on the Deerfield Moraine (−87.9102°W, 42.4260°N) located about 9 km east of Lake Michigan. The chronology of individual successions indicates the lakes persisted on the periglacial landscape for about 300 to 1500 yr.


Sign in / Sign up

Export Citation Format

Share Document