root endophytes
Recently Published Documents


TOTAL DOCUMENTS

87
(FIVE YEARS 24)

H-INDEX

27
(FIVE YEARS 1)

2021 ◽  
Vol 12 ◽  
Author(s):  
Yu Zhang ◽  
Xin Liu ◽  
Jiying Guo ◽  
Jianbo Zhao ◽  
Shangde Wang ◽  
...  

Phosphorus (P) is an important macronutrient for all lives, but it is also a finite resource. Therefore, it is important to understand how to increase the P availability and plant uptake. The endophytes can help host plants to improve P uptake and will be apparently affected by plant genotypes. To investigate the mechanism of root endophytes in promoting P uptake of peach rootstocks, we analyzed the variations of the root endophytic fungal and bacterial communities of peach rootstocks with different P efficiencies under high or low level of P addition. Results showed that Proteobacteria was the dominant bacterial phylum in the roots of all rootstocks under the two levels of P addition. At low P level, the abundance of Actinoplanes in phosphorus-inefficiency root system was apparently higher than that at high P level. Actinoplanes produced important secondary metabolites, improving the stress resistance of plants. Under high P condition, the abundance of Ferrovibrio was higher in Qing Zhou Mi Tao than in Du Shi. Fe oxides considerably reduced the availability of applied P, which partially explained why the P utilization in Qing Zhou Mi Tao is inefficient. Further, Ascomycota was the dominant fungal phylum in the roots of all rootstocks under different levels of P addition. The fungi community of roots varied in different rootstocks at each P level, but was similar for the same rootstock at different P levels, which indicated that genotype had a greater effect than P addition on the fungal community of peach rootstocks.


2021 ◽  
Author(s):  
Besiana Sinanaj ◽  
Grace A. Hoysted ◽  
Silvia Pressel ◽  
Martin I. Bidartondo ◽  
Katie J. Field

2021 ◽  
Vol 12 ◽  
Author(s):  
Eric C. Pereira ◽  
Beatriz R. Vazquez de Aldana ◽  
Juan B. Arellano ◽  
Iñigo Zabalgogeazcoa

Festuca rubra subsp. pruinosa is a perennial grass that inhabits sea cliffs, a habitat where salinity and low nutrient availability occur. These plants have a rich fungal microbiome, and particularly common are their associations with Epichloë festucae in aboveground tissues and with Fusarium oxysporum and Periconia macrospinosa in roots. In this study, we hypothesized that these fungi could affect the performance of F. rubra plants under salinity, being important complements for plant habitat adaptation. Two lines of F. rubra, each one consisting of Epichloë-infected and Epichloë-free clones, were inoculated with the root endophytes (F. oxysporum and P. macrospinosa) and subjected to a salinity treatment. Under salinity, plants symbiotic with Epichloë had lower Na+ content than non-symbiotic plants, but this effect was not translated into plant growth. P. macrospinosa promoted leaf and root growth in the presence and absence of salinity, and F. oxysporum promoted leaf and root growth in the presence and absence of salinity, plus a decrease in leaf Na+ content under salinity. The growth responses could be due to functions related to improved nutrient acquisition, while the reduction of Na+ content might be associated with salinity tolerance and plant survival in the long term. Each of these three components of the F. rubra core mycobiome contributed with different functions, which are beneficial and complementary for plant adaptation to its habitat in sea cliffs. Although our results do not support an obvious role of Epichloë itself in FRP salt tolerance, there is evidence that Epichloë can interact with root endophytes, affecting host plant performance.


Symbiosis ◽  
2021 ◽  
Author(s):  
Danilo Reis Gonçalves ◽  
Rodica Pena ◽  
Gerhard Zotz ◽  
Dirk C. Albach

AbstractEndophytic fungi are known to be present in roots of salt marsh plants, but their ecological role in this symbiosis is still largely unknown. Generally considered parasitic or saprophytic, they may still be mutualistic, at least under certain circumstances. Among salt marsh plants, Salicornia spp. are recognized as particularly salt-tolerant and their frequent colonization by root endophytes has also been reported. This study aimed to investigate whether the inoculation of Salicornia with different root endophytes isolated from field-collected Salicornia affects biomass production, nutrient uptake and photosynthesis (assessed via chlorophyll fluorescence). In addition, we investigated whether fungal inoculation confers tolerance to salt stress given that endophytes are suggested to increase salt tolerance and improve plant fitness in other less salt-tolerant plants. The inoculation of Salicornia with an isolate of the genus Stemphylium positively influenced total biomass production and nitrogen concentration in roots at optimum salinity condition (150 mM NaCl). However, under salt stress (650 mM NaCl), no significant effects of fungal inoculation on biomass production and photosynthesis were observed. Further, positive and negative effects of fungal inoculation on nutrient concentrations were observed in roots and shoots, respectively. Our results indicate that different endophytic fungi and their interaction result in distinct fungal species-specific plant growth responses of Salicornia under different growth conditions.


Author(s):  
Gustavo Flores-Torres ◽  
Anaid Penelope Solis-Hernández ◽  
Gilberto Vela-Correa ◽  
Aída Verónica Rodríguez-Tovar ◽  
Oscar Cano-Flores ◽  
...  

2021 ◽  
Vol 9 (5) ◽  
pp. 1050
Author(s):  
Jing Zhu ◽  
Xiang Sun ◽  
Zhi-Dong Zhang ◽  
Qi-Yong Tang ◽  
Mei-Ying Gu ◽  
...  

Endophytic bacteria and fungi colonize plants that grow in various types of terrestrial and aquatic ecosystems. Our study investigates the communities of endophytic bacteria and fungi of halophyte Kalidium schrenkianum growing in stressed habitats with ionizing radiation. The geochemical factors and radiation (at low, medium, high level and control) both affected the structure of endophytic communities. The bacterial class Actinobacteria and the fungal class Dothideomycetes predominated the endophytic communities of K. schrenkianum. Aerial tissues of K. schrenkianum had higher fungal diversity, while roots had higher bacterial diversity. Radiation had no significant effect on the abundance of bacterial classes. Soil pH, total nitrogen, and organic matter showed significant effects on the diversity of root endophytes. Radiation affected bacterial and fungal community structure in roots but not in aerial tissues, and had a strong effect on fungal co-occurrence networks. Overall, the genetic diversity of both endophytic bacteria and fungi was higher in radioactive environments, however negative correlations were found between endophytic bacteria and fungi in the plant. The genetic diversity of both endophytic bacteria and fungi was higher in radioactive environments. Our findings suggest that radiation affects root endophytes, and that the endophytes associated with aerial tissues and roots of K. schrenkianum follow different mechanisms for community assembly and different paradigms in stress response.


2021 ◽  
Vol 7 (4) ◽  
pp. 317
Author(s):  
Sophie Stroheker ◽  
Vivanne Dubach ◽  
Irina Vögtli ◽  
Thomas N. Sieber

Host preference of root endophytes of the three European tree species of Norway spruce (Picea abies), common ash (Fraxinus excelsior), and sycamore maple (Acer pseudoplatanus) were investigated in two forest stands near Zurich, Switzerland. The focus was placed on members of the Phialocephala fortinii s.l. (sensu lato)—Acephala applanata species complex (PAC), as well as other dark septate endopyhtes (DSE). PAC species were identified based on 13 microsatellite loci. Eleven PAC species were found, with Phialocephala helvetica, P. europaea being the most frequent. All but cryptic species 12 (CSP12) preferred Norway spruce as a host. Though very rare in general, CSP12 was most frequently isolated from maple roots. Regarding the abundant PAC species, P. helvetica and P. europaea, the preference of spruce as a host was least pronounced in P. europaea, as it was also often isolated from ash and maple. It is the first record of PAC found on common ash (Fraxinus excelsior). Cadophora orchidicola, a close relative of PAC, has frequently been isolated from ash. Various species of the Nectriaceae (Cylindrocarpon spp.) have often been isolated, particularly from maple roots. By comparison, Pezicula spp. (Cryptosporiopsis spp.) was found to be abundant on all three hosts. Phomopsis phaseoli exhibits a clear preference for spruce.


2021 ◽  
Vol 12 ◽  
Author(s):  
Cristian Torres-Díaz ◽  
Moisés A. Valladares ◽  
Ian S. Acuña-Rodríguez ◽  
Gabriel I. Ballesteros ◽  
Andrea Barrera ◽  
...  

Beneficial plant-associated microorganisms, such as fungal endophytes, are key partners that normally improve plant survival under different environmental stresses. It has been shown that microorganisms from extreme environments, like those associated with the roots of Antarctica plants, can be good partners to increase the performance of crop plants and to restore endangered native plants. Nothofagus alessandrii and N. glauca, are among the most endangered species of Chile, restricted to a narrow and/or limited distributional range associated mainly to the Maulino forest in Chile. Here we evaluated the effect of the inoculation with a fungal consortium of root endophytes isolated from the Antarctic host plant Colobanthus quitensis on the ecophysiological performance [photosynthesis, water use efficiency (WUE), and growth] of both endangered tree species. We also, tested how Antarctic root-fungal endophytes could affect the potential distribution of N. alessandrii through niche modeling. Additionally, we conducted a transplant experiment recording plant survival on 2 years in order to validate the model. Lastly, to evaluate if inoculation with Antarctic endophytes has negative impacts on native soil microorganisms, we compared the biodiversity of fungi and bacterial in the rhizospheric soil of transplanted individuals of N. alessandrii inoculated and non-inoculated with fungal endophytes. We found that inoculation with root-endophytes produced significant increases in N. alessandrii and N. glauca photosynthetic rates, water use efficiencies and cumulative growth. In N. alessandrii, seedling survival was significantly greater on inoculated plants compared with non-inoculated individuals. For this species, a spatial distribution modeling revealed that, inoculation with root-fungal endophytes could potentially increase the current distributional range by almost threefold. Inoculation with root-fungal endophytes, did not reduce native rhizospheric microbiome diversity. Our results suggest that the studied consortium of Antarctic root-fungal endophytes improve the ecophysiological performance as well as the survival of inoculated trees and can be used as a biotechnological tool for the restoration of endangered tree species.


Sign in / Sign up

Export Citation Format

Share Document