fully nonlinear
Recently Published Documents


TOTAL DOCUMENTS

1348
(FIVE YEARS 264)

H-INDEX

57
(FIVE YEARS 6)

Author(s):  
L. G. P. dos Santos ◽  
F. D. Marques ◽  
R. M. G. Vasconcellos
Keyword(s):  

Author(s):  
Shanze Gao ◽  
Haizhong Li ◽  
Xianfeng Wang

Abstract In this paper, we investigate closed strictly convex hypersurfaces in ℝ n + 1 {\mathbb{R}^{n+1}} which shrink self-similarly under a large family of fully nonlinear curvature flows by high powers of curvature. When the speed function is given by powers of a homogeneous of degree 1 and inverse concave function of the principal curvatures with power greater than 1, we prove that the only such hypersurfaces are round spheres. We also prove that slices are the only closed strictly convex self-similar solutions to such curvature flows in the hemisphere 𝕊 + n + 1 {\mathbb{S}^{n+1}_{+}} with power greater than or equal to 1.


Author(s):  
Sunghan Kim ◽  
Ki-Ahm Lee

AbstractThis article is concerned with uniform $$C^{1,\alpha }$$ C 1 , α and $$C^{1,1}$$ C 1 , 1 estimates in periodic homogenization of fully nonlinear elliptic equations. The analysis is based on the compactness method, which involves linearization of the operator at each approximation step. Due to the nonlinearity of the equations, the linearized operators involve the Hessian of correctors, which appear in the previous step. The involvement of the Hessian of the correctors deteriorates the regularity of the linearized operator, and sometimes even changes its oscillating pattern. These issues are resolved with new approximation techniques, which yield a precise decomposition of the regular part and the irregular part of the homogenization process, along with a uniform control of the Hessian of the correctors in an intermediate level. The approximation techniques are even new in the context of linear equations. Our argument can be applied not only to concave operators, but also to certain class of non-concave operators.


Sign in / Sign up

Export Citation Format

Share Document