tree ring analysis
Recently Published Documents


TOTAL DOCUMENTS

150
(FIVE YEARS 22)

H-INDEX

28
(FIVE YEARS 3)

Forests ◽  
2021 ◽  
Vol 12 (12) ◽  
pp. 1655
Author(s):  
Wisawakorn Surayothee ◽  
Supaporn Buajan ◽  
Peili Fu ◽  
Nathsuda Pumijumnong ◽  
Zexin Fan ◽  
...  

Tropical forests play important roles in global carbon cycling. Tree-ring analysis can provide important information for understanding long-term trends in carbon-fixation capacity under climate change. However, tree-ring studies in tropical regions are limited. We carried out a tree-ring analysis to investigate the dendrochronological potential of the tropical forest tree Choerospondias axillaris (Anacardiaceae) in east-central Thailand. Our study focused on growth-climate relationships and long-term growth trends. A chronology was constructed covering the period from 1932 to 2019. The tree-ring width index of C.axillaris was positively correlated with precipitation in June, July, and October. Furthermore, growth of C.axillaris was positively correlated with the Standardized Precipitation-Evapotranspiration Index (SPEI) from July to October, indicating that growth of C.axillaris is mainly limited by moisture availability in the late monsoon season. Moving correlation analysis further revealed the consistency and temporal stability of the relationship of tree growth with monsoon season precipitation and SPEI during the period under study. There was a significant increasing trend in long-term growth from 1932 to 2002 (slope = 0.017, p < 0.001); however, long-term growth decreased from 2003 to 2019 (slope = −0.014, p < 0.001). Our study provides important insight into the growth-climate correlations of a broad-leaved tree species in a dry evergreen forest in tropical Asia.


2020 ◽  
Vol 12 (21) ◽  
pp. 9118
Author(s):  
En-Bi Choi ◽  
Yo-Jung Kim ◽  
Jun-Hui Park ◽  
Chan-Ryul Park ◽  
Jeong-Wook Seo

Resin is one of the traditional non-timber forest products in the Republic of Korea. In order to investigate the chronological activity of resin collection, the wounds/cuts on red pines (Pinus densiflora) were dated using a tree-ring analysis technique. Additionally, the size of the trees in the resin collection years and the present conditions of the trees were investigated to verify the tree conditions and the size of wounds. Eighty-eight red pines distributed over nine sites in the Republic of Korea were selected to extract increment cores and investigate the wound size. Through the tree-ring analysis, the trees with big wounds (24.7 × 104.7 cm) made via panel hacksaw method were dated in the range 1938–1952, whereas small wounds (40.2 × 20.9 cm) made via the conventional chisel method were dated between 1956 and 1973. Moreover, the red pines thicker than 20.0 cm were the ones that were used for resin collection. Furthermore, the wounds created by the conventional chisel were healed with time, whereas the ones formed via the panel hacksaw method still required long times for healing. The large wounds had the advantage of supplying a large amount of resin, but this was temporary. On the other hand, the smaller wounds formed via the traditional chisel method could generate resin for a longer time and heal faster.


2020 ◽  
Vol 132 (7-8) ◽  
pp. 1775-1791
Author(s):  
William T. Struble ◽  
Joshua J. Roering ◽  
Bryan A. Black ◽  
William J. Burns ◽  
Nancy Calhoun ◽  
...  

Abstract Large-magnitude earthquakes and hydrologic events in mountainous settings commonly trigger thousands of landslides, and slope failures typically constitute a significant proportion of the damage associated with these events. Large, dormant deep-seated landslides are ubiquitous in the Oregon Coast Range, western United States, yet a method for calculating landslide ages with the precision required to diagnose a specific triggering event, including the A.D. 1700 Cascadia earthquake, has remained elusive. Establishing a compelling connection between prehistoric slope instability and specific triggers requires landslide ages with precision greater than that provided by 14C dating of detrital materials. Tree-ring analysis is the only known method capable of determining landslide age with this precision. Dozens of landslide-dammed lakes in western Oregon present an opportunity to use tree rings from drowned snags, or “ghost forests,” to establish the year of death, and thus landsliding. We cross-dated tree-ring indices from drowned Douglas fir trees with live tree-ring records from the Oregon Coast Range that exhibit synchronous, time-specific patterns due to regional climate variations. Our analyses determined that the landslides responsible for creating Wasson and Klickitat Lakes occurred in A.D. 1819 and 1751, respectively. The 14C dates from selected tree rings and landslide deposit detritus are consistent with our tree-ring analysis, although the ages exhibit high variability, revealing the limitations of using 14C dating alone. Because dendrochronology provides annual precision for landsliding, sampling of tree rings at additional landslide-dammed lakes throughout the Oregon Coast Range can be used to constrain the potential effects of ground motion and major storms on Cascadia landscapes.


2019 ◽  
Vol 45 (2) ◽  
pp. 345-360
Author(s):  
Tara L. Metzger ◽  
James E. Pizzuto ◽  
Shelia M. Trampush ◽  
Jonathan M. Friedman ◽  
Derek M. Schook

Sign in / Sign up

Export Citation Format

Share Document