rc columns
Recently Published Documents


TOTAL DOCUMENTS

1039
(FIVE YEARS 352)

H-INDEX

40
(FIVE YEARS 8)

2022 ◽  
Vol 148 (3) ◽  
Author(s):  
Andrea Lucchini ◽  
José Melo ◽  
António Arêde ◽  
Humberto Varum ◽  
Paolo Franchin ◽  
...  
Keyword(s):  

2022 ◽  
Vol 254 ◽  
pp. 113776
Author(s):  
Nestor Mejía ◽  
Ricardo Peralta ◽  
Rodrigo Tapia ◽  
Ricardo Durán ◽  
Andrés Sarango

2022 ◽  
Vol 252 ◽  
pp. 113654
Author(s):  
Li Xu ◽  
Jinlong Pan ◽  
Li Guo

Structures ◽  
2022 ◽  
Vol 36 ◽  
pp. 445-462
Author(s):  
Mehmet Mustafa Daskiran ◽  
Esma Gizem Daskiran ◽  
Mustafa Gencoglu

Materials ◽  
2022 ◽  
Vol 15 (2) ◽  
pp. 592
Author(s):  
Siyun Kim ◽  
Sung Jig Kim ◽  
Chunho Chang

The paper investigates the seismic performance of rectangular RC columns retrofitted by a newly developed 3D Textile Reinforced Mortar (TRM) panel. The 3D-TRM used in this study consists of two components: self-leveling mortar and 3D textiles. Firstly, the flexural capacity of the 3D-TRM panel was investigated through the four-point flexural test. Secondly, a total of five specimens were constructed and experimentally investigated through static cyclic loading tests with constant axial load. One specimen was a non-seismically designed column without any retrofit, while the others were strengthened with either the 3D-TRM panel or conventional Fiber Reinforced Polymer (FRP) sheets. Experimental results in terms of hysteretic behavior, ductility ratio, and energy dissipation are investigated and compared with the cases of specimens with conventional retrofitting methods and without any retrofit. The maximum lateral force, ductility, stiffness degradation, and energy dissipation of RC columns with 3D-TRM panels were significantly improved compared with the conventional RC column. Therefore, it is concluded that the proposed retrofitting method can improve the seismic performance of non-conforming RC columns.


2022 ◽  
Vol 906 ◽  
pp. 17-23
Author(s):  
Ashot G. Tamrazyan ◽  
Yehia A.K. Sayed

A complete reorganization about the behavior of rectangular RC columns confined with FRP sheet is very important to predict the axial compressive strength values of the strengthened rectangular RC columns. That is because the process of strengthening RC rectangular column depending on several parameters that role this type of strengthening. These parameters include the characteristics of the used fiber, the grade of concrete and the geometry of the cross section including the rectangularity aspect ratio, corner radius, and size of specimens. Besides that, using a wide scope of experimental data may affect positively to generalize a model that considers the whole parameters affect the value of the axial strength. So, in this paper a review about parameters that affect the axial compressive strength values of rectangular RC columns was conducted. After that, based on the test results regarding FRP-confined rectangular RC columns available in the literature or conducted by the author, some existing confinement models for rectangular RC columns were assessed. Further, a new model is proposed through regression analysis of the database. A new model is proposed through regression analysis of the database. The proposed model was found to be in good agreement with the test results in the database. Finally, based on the results conclusions were drawn.


Author(s):  
Hazem Elbakry ◽  
Tarek Ebeido ◽  
El-Tony M. El-Tony ◽  
Momen Ali

Reinforced concrete columns consume large quantities of ties, especially inner cross-ties in columns with large dimensions. In some cases, nesting of the pillars occurs as a result of the presence of cross-ties. The main objective of this paper is to develop new methods for transverse reinforcement in RC columns and investigate their effect on the behavior of the columns. The proposed V-ties as transverse reinforcement replacing the ordinary and cross-ties details are economically feasible. They facilitate shorter construction periods and decrease materials and labor costs. For this purpose, experimental and numerical studies are carried out. In the experimental program, nine reinforced concrete columns with identical concrete dimensions and longitudinal reinforcing bars were prepared and tested under concentric axial load with different tie configurations. The main parameters were the tie configurations and the length (lv) of V-tie legs. As part of the numerical study, the finite element model using the ABAQUS software program obtained good agreement with the experimental results of specimens. A numerical parametric study was carried out to study the influence of concrete compressive strength and longitudinal reinforcement ratio on the behavior of RC columns with the considered tie configurations. Based on the experimental and numerical results, it was found that using V-tie techniques instead of traditional ties could increase the axial load capacity of columns, restrain early local buckling of the longitudinal reinforcing bars and improve the concrete core confinement of reinforced concrete columns.


Sign in / Sign up

Export Citation Format

Share Document