polycomb repressive complexes
Recently Published Documents


TOTAL DOCUMENTS

69
(FIVE YEARS 26)

H-INDEX

14
(FIVE YEARS 3)

eLife ◽  
2022 ◽  
Vol 11 ◽  
Author(s):  
Ayana Sawai ◽  
Sarah Pfennig ◽  
Milica Bulajić ◽  
Alexander Miller ◽  
Alireza Khodadadi-Jamayran ◽  
...  

Polycomb repressive complexes (PRCs) 1 and 2 maintain stable cellular memories of early fate decisions by establishing heritable patterns of gene repression. PRCs repress transcription through histone modifications and chromatin compaction, but their roles in neuronal subtype diversification are poorly defined. We found that PRC1 is essential for the specification of segmentally-restricted spinal motor neuron (MN) subtypes, while PRC2 activity is dispensable to maintain MN positional identities during terminal differentiation. Mutation of the core PRC1 component Ring1 in mice leads to increased chromatin accessibility and ectopic expression of a broad variety of fates determinants, including Hox transcription factors, while neuronal class-specific features are maintained. Loss of MN subtype identities in Ring1 mutants is due to the suppression of Hox-dependent specification programs by derepressed Hox13 paralogs (Hoxa13, Hoxb13, Hoxc13, Hoxd13). These results indicate that PRC1 can function in the absence of de novo PRC2-dependent histone methylation to maintain chromatin topology and postmitotic neuronal fate.


2021 ◽  
Author(s):  
Daniel Bsteh ◽  
Hagar F Moussa ◽  
Georg Michlits ◽  
Ramesh Yelagandula ◽  
Jingkui Wang ◽  
...  

Polycomb Repressive Complexes 1 and 2 (PRC1, PRC2) are conserved epigenetic regulators that promote transcriptional silencing. PRC1 and PRC2 converge on shared targets, catalyzing repressive histone modifications. In addition, a subset of PRC1/PRC2 targets engage in long-range interactions whose functions in gene silencing are poorly understood. Using a CRISPR screen in mouse embryonic stem cells, we identified that the cohesin regulator PDS5A links transcriptional silencing by Polycomb and 3D genome organization. PDS5A deletion impairs cohesin unloading and results in derepression of subset of endogenous PRC1/PRC2 target genes. Importantly, derepression is not associated with loss of repressive Polycomb chromatin modifications. Instead, loss of PDS5A leads to aberrant cohesin activity, ectopic insulation sites and specific reduction of ultra-long Polycomb loops. We infer that these loops are important for robust silencing at a subset of Polycomb target genes and that maintenance of cohesin-dependent genome architecture is critical for Polycomb regulation.


Author(s):  
Akhil Gargey Iragavarapu ◽  
Liqi Yao ◽  
Vignesh Kasinath

Polycomb repressive complexes are a family of chromatin modifier enzymes which are critical for regulating gene expression and maintaining cell-type identity. The reversible chemical modifications of histone H3 and H2A by the Polycomb proteins are central to its ability to function as a gene silencer. PRC2 is both a reader and writer of the tri-methylation of histone H3 lysine 27 (H3K27me3) which serves as a marker for transcription repression, and heterochromatin boundaries. Over the last few years, several studies have provided key insights into the mechanisms regulating the recruitment and activation of PRC2 at Polycomb target genes. In this review, we highlight the recent structural studies which have elucidated the roles played by Polycomb cofactor proteins in mediating crosstalk between histone post-translational modifications and the recruitment of PRC2 and the stimulation of PRC2 methyltransferase activity.


NAR Cancer ◽  
2021 ◽  
Vol 3 (4) ◽  
Author(s):  
Sijie Wang ◽  
Sandra C. Ordonez-Rubiano ◽  
Alisha Dhiman ◽  
Guanming Jiao ◽  
Brayden P Strohmier ◽  
...  

Abstract Polycomb repressive complexes (PRCs) are a heterogenous collection of dozens, if not hundreds, of protein complexes composed of various combinations of subunits. PRCs are transcriptional repressors important for cell-type specificity during development, and as such, are commonly mis-regulated in cancer. PRCs are broadly characterized as PRC1 with histone ubiquitin ligase activity, or PRC2 with histone methyltransferase activity; however, the mechanism by which individual PRCs, particularly the highly diverse set of PRC1s, alter gene expression has not always been clear. Here we review the current understanding of how PRCs act, both individually and together, to establish and maintain gene repression, the biochemical contribution of individual PRC subunits, the mis-regulation of PRC function in different cancers, and the current strategies for modulating PRC activity. Increased mechanistic understanding of PRC function, as well as cancer-specific roles for individual PRC subunits, will uncover better targets and strategies for cancer therapies.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Hiroki Sugishita ◽  
Takashi Kondo ◽  
Shinsuke Ito ◽  
Manabu Nakayama ◽  
Nayuta Yakushiji-Kaminatsui ◽  
...  

AbstractPolycomb repressive complexes-1 and -2 (PRC1 and 2) silence developmental genes in a spatiotemporal manner during embryogenesis. How Polycomb group (PcG) proteins orchestrate down-regulation of target genes upon differentiation, however, remains elusive. Here, by differentiating embryonic stem cells into embryoid bodies, we reveal a crucial role for the PCGF1-containing variant PRC1 complex (PCGF1-PRC1) to mediate differentiation-associated down-regulation of a group of genes. Upon differentiation cues, transcription is down-regulated at these genes, in association with PCGF1-PRC1-mediated deposition of histone H2AK119 mono-ubiquitination (H2AK119ub1) and PRC2 recruitment. In the absence of PCGF1-PRC1, both H2AK119ub1 deposition and PRC2 recruitment are disrupted, leading to aberrant expression of target genes. PCGF1-PRC1 is, therefore, required for initiation and consolidation of PcG-mediated gene repression during differentiation.


2021 ◽  
Vol 10 (1) ◽  
Author(s):  
Yuan Zhao ◽  
Tianyu Wang ◽  
Yanqi Zhang ◽  
Liang Shi ◽  
Cong Zhang ◽  
...  

AbstractPolycomb repressive complexes (PRCs) are essential in mouse gastrulation and specify neural ectoderm in human embryonic stem cells (hESCs), but the underlying molecular basis remains unclear. Here in this study, by employing an array of different approaches, such as gene knock-out, RNA-seq, ChIP-seq, et al., we uncover that EZH2, an important PRC factor, specifies the normal neural fate decision through repressing the competing meso/endoderm program. EZH2−/− hESCs show an aberrant re-activation of meso/endoderm genes during neural induction. At the molecular level, EZH2 represses meso/endoderm genes while SOX2 activates the neural genes to coordinately specify the normal neural fate. Moreover, EZH2 also supports the proliferation of human neural progenitor cells (NPCs) through repressing the aberrant expression of meso/endoderm program during culture. Together, our findings uncover the coordination of epigenetic regulators such as EZH2 and lineage factors like SOX2 in normal neural fate decision.


2021 ◽  
Author(s):  
Jeremy Dasen ◽  
Ayana Sawai ◽  
Sarah Pfennig ◽  
Milica Bulajić ◽  
Alexander Miller ◽  
...  

Polycomb repressive complexes (PRCs) 1 and 2 maintain stable cellular memories of early fate decisions by establishing heritable patterns of gene repression. PRCs repress transcription through histone modifications and chromatin compaction, but their roles in neuronal subtype diversification are poorly defined. We unexpectedly found that PRC2 is dispensable to preserve the morphogen-induced positional fates of spinal motor neurons (MNs), while PRC1 is essential for the specification of segmentally-restricted subtypes. Mutation of the core PRC1 component Ring1 in mice leads to increased chromatin accessibility and ectopic expression of a broad variety of fates determinants, including Hox transcription factors, while neuronal class-specific features are maintained. Loss of MN subtype identities in Ring1 mutants is due to the suppression of Hox networks by derepressed caudal Hox genes. These results indicate that PRC1 can function independently of de novo PRC2-dependent histone methylation to maintain chromatin topology and transcriptional memory at the time of neuronal differentiation.


2021 ◽  
Vol 22 (14) ◽  
pp. 7533
Author(s):  
Valerie Hinsch ◽  
Samuel Adkins ◽  
Darren Manuela ◽  
Mingli Xu

Correct timing of developmental phase transitions is critical for the survival and fitness of plants. Developmental phase transitions in plants are partially promoted by controlling relevant genes into active or repressive status. Polycomb Repressive Complex1 (PRC1) and PRC2, originally identified in Drosophila, are essential in initiating and/or maintaining genes in repressive status to mediate developmental phase transitions. Our review summarizes mechanisms in which the embryo-to-seedling transition, the juvenile-to-adult transition, and vegetative-to-reproductive transition in plants are mediated by PRC1 and PRC2, and suggests that PRC1 could act either before or after PRC2, or that they could function independently of each other. Details of the exact components of PRC1 and PRC2 in each developmental phase transitions and how they are recruited or removed will need to be addressed in the future.


2021 ◽  
Author(s):  
Wenqiu Xu ◽  
Likun Ren ◽  
Caihong Zheng ◽  
Jun Cai

Transposable DNA sequences constitute more than half of the human and mouse genomes. A large number of non-coding RNAs, named as transposon RNAs, are derived from these transposable elements. The cis-regulatory function of transposable DNA elements, such as LINE-1 and Alu has been largely explored. But the biological roles of transposon RNAs aren't well understood. Here, investigations of RNA-chromatin interactions provide us with comprehensive evidence that specific families of transposon RNAs play roles in trans-regulation linking to the core inhibition circuitry for embryonic stem cell identity. Alternative modes of the RNA-DNA hybrid duplex and protein-recruited RNA scaffold are required for the regulatory activities of transposon RNAs. LINE-1 RNAs co-locating with KAP1 form a negative feedback loop stabilizing the transcription of LINE-1 DNA elements via RNA-DNA hybrids. In another way LINE-1 RNAs, together with the reprogramming three factors and Polycomb repressive complexes, participate in the inhibition on dozens of differentiation-relative genes.


Sign in / Sign up

Export Citation Format

Share Document