petal senescence
Recently Published Documents


TOTAL DOCUMENTS

100
(FIVE YEARS 21)

H-INDEX

20
(FIVE YEARS 3)

2022 ◽  
Author(s):  
Shan Feng ◽  
Ruiming Wang ◽  
Hualiang Tan ◽  
Linlin Zhong ◽  
Yunjiang Cheng ◽  
...  

Petal senescence is controlled by a complex regulatory network. Epigenetic regulation like histone modification influences chromatin state and gene expression. However, involvement of histone methylation in regulating petal senescence is still largely unknown. Here, we found that the trimethylation of histone H3 at Lysine 4 (H3K4me3) is increased during the ethylene induced petal senescence in carnation (Dianthus caryophyllus L.). The H3K4me3 levels are positively associated with the expression of transcription factor DcWRKY75, ethylene biosynthetic genes DcACS1 and DcACO1, and senescence associated genes (SAGs) DcSAG12 and DcSAG29. Further, we identified that carnation DcATX1 (ARABIDOPSIS HOMOLOG OF TRITHORAX1) encodes a histone lysine methyltransferase which can methylate H3K4. Knockdown of DcATX1 delays ethylene induced petal senescence in carnation, which is associated with the downregulated expression of DcWRKY75, DcACO1 and DcSAG12. While overexpression of DcATX1 exhibits the opposite effects. DcATX1 promotes the transcription of DcWRKY75, DcACO1 and DcSAG12 by targeting to their promoters to elevate the H3K4me3 levels. Overall, our results demonstrate that DcATX1 is a H3K4 methyltransferase that promotes the expression of DcWRKY75, DcACO1 and DcSAG12 by regulating H3K4me3 levels, thereby accelerating ethylene induced petal senescence in carnation. This study further indicates that epigenetic regulation is important for plant senescence process.


Planta ◽  
2021 ◽  
Vol 255 (1) ◽  
Author(s):  
Juanni Yao ◽  
Rui Li ◽  
Yulin Cheng ◽  
Zhengguo Li

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Morteza Soleimani Aghdam ◽  
Amin Ebrahimi ◽  
Morteza Sheikh-Assadi

AbstractRoses are widely used as cut flowers worldwide. Petal senescence confines the decorative quality of cut rose flowers, an impressively considerable economic loss. Herein, we investigated the SUMO1/SUMO E3 ligase SIZ1 signaling pathway during bud opening, and petal senescence of cut rose flowers. Our results exhibited that the higher expression of SUMO1 and SUMO E3 ligase SIZ1 during bud opening was accompanied by lower endogenous H2O2 accumulation arising from higher expression and activities of SOD, CAT, APX, and GR, promoting proline accumulation by increasing P5CS expression and activity and enhancing GABA accumulation by increasing GAD expression and activity. In harvested flowers, lower expressions of SUMO1 and SUMO E3 ligase SIZ1 during petal senescence were associated with higher endogenous H2O2 accumulation due to lower expression and activities of SOD, CAT, APX, and GR. Therefore, promoting the activity of the GABA shunt pathway as realized by higher expression and activities of GABA-T and SSADH accompanied by increasing OAT expression and activity for sufficiently supply proline in rose flowers during petal senescence might serve as an endogenous antisenescence mechanism for slowing down petals senescence by avoiding endogenous H2O2 accumulation. Following phytosulfokine α (PSKα) application, postponing petal senescence in cut rose flowers could be ascribed to higher expression of SUMO1 and SUMO E3 ligase SIZ1 accompanied by higher expression and activities of SOD, CAT, APX, and GR, higher activity of GABA shunt pathway as realized by higher expression and activities of GAD, GABA-T, and SSADH, higher expression and activities of P5CS and OAT for supplying proline and higher expression of HSP70 and HSP90. Therefore, our results highlight the potential of the PSKα as a promising antisenescence signaling peptide in the floriculture industry for postponing senescence and extending the vase life of cut rose flowers.


2021 ◽  
Vol 1 (1) ◽  
Author(s):  
Jing Zou ◽  
Peitao Lü ◽  
Liwei Jiang ◽  
Kun Liu ◽  
Tao Zhang ◽  
...  

AbstractPetals and leaves share common evolutionary origins but have different phenotypic characteristics, such as the absence of stomata in the petals of most angiosperm species. Plant NAC transcription factor, NAP, is involved in ABA responses and regulates senescence-associated genes, and especially those that affect stomatal movement. However, the regulatory mechanisms and significance of NAP action in senescing astomatous petals is unclear. A major limiting factor is failure of flower opening and accelerated senescence. Our goal is to understand the finely regulatory mechanism of dehydration tolerance and aging in rose flowers. We functionally characterized RhNAP, an AtNAP-like transcription factor gene that is induced by dehydration and aging in astomatous rose petals. Cytokinins (CKs) are known to delay petal senescence and we found that a cytokinin oxidase/dehydrogenase gene 6 (RhCKX6) shares similar expression patterns with RhNAP. Silencing of RhNAP or RhCKX6 expression in rose petals by virus induced gene silencing markedly reduced petal dehydration tolerance and delayed petal senescence. Endogenous CK levels in RhNAP- or RhCKX6-silenced petals were significantly higher than those of the control. Moreover, RhCKX6 expression was reduced in RhNAP-silenced petals. This suggests that the expression of RhCKX6 is regulated by RhNAP. Yeast one-hybrid experiments and electrophoresis mobility shift assays showed that RhNAP binds to the RhCKX6 promoter in heterologous in vivo system and in vitro, respectively. Furthermore, the expression of putative signal transduction and downstream genes of ABA-signaling pathways were also reduced due to the repression of PP2C homolog genes by RhNAP in rose petals. Taken together, our study indicates that the RhNAP/RhCKX6 interaction represents a regulatory step enhancing dehydration tolerance in young rose petals and accelerating senescence in mature petals in a stomata-independent manner.


Plants ◽  
2021 ◽  
Vol 10 (8) ◽  
pp. 1662
Author(s):  
Longna Li ◽  
Qianlan Yin ◽  
Tong Zhang ◽  
Pengfei Cheng ◽  
Sheng Xu ◽  
...  

The short vase life of cut flowers limits their commercial value. To ameliorate this practical problem, this study investigated the effect of hydrogen nanobubble water (HNW) on delaying senescence of cut carnation flowers (Dianthus caryophyllus L.). It was observed that HNW had properties of higher concentration and residence time for the dissolved hydrogen gas in comparison with conventional hydrogen-rich water (HRW). Meanwhile, application of 5% HNW significantly prolonged the vase life of cut carnation flowers compared with distilled water, other doses of HNW (including 1%, 10%, and 50%), and 10% HRW, which corresponded with the alleviation of fresh weight and water content loss, increased electrolyte leakage, oxidative damage, and cell death in petals. Further study showed that the increasing trend with respect to the activities of nucleases (including DNase and RNase) and protease during vase life period was inhibited by 5% HNW. The results indicated that HNW delayed petal senescence of cut carnation flowers through reducing reactive oxygen species accumulation and initial activities of senescence-associated enzymes. These findings may provide a basic framework for the application of HNW for postharvest preservation of agricultural products.


2021 ◽  
Vol 23 (2) ◽  
pp. 142-149
Author(s):  
Moitreyee Kundu ◽  
Arnab Jash ◽  
Shubhankar Mukherjee ◽  
Aloke Bhattacharjee ◽  
Dibakar Mukherjee
Keyword(s):  

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Hsing-Fun Hsu ◽  
Wei-Han Chen ◽  
Yi-Hsuan Shen ◽  
Wei-Han Hsu ◽  
Wan-Ting Mao ◽  
...  

AbstractWe previously found that B and AGL6 proteins form L (OAP3-2/OAGL6-2/OPI) and SP (OAP3-1/OAGL6-1/OPI) complexes to determine lip/sepal/petal identities in orchids. Here, we show that the functional L’ (OAP3-1/OAGL6-2/OPI) and SP’ (OAP3-2/OAGL6-1/OPI) complexes likely exist and AP3/PI/AGL6 genes have acquired additional functions during evolution. We demonstrate that the presumed L’ complex changes the structure of the lower lateral sepals and helps the lips fit properly in the center of the flower. In addition, we find that OAP3-1/OAGL6-1/OPI in SP along with presumed SP’ complexes regulate anthocyanin accumulation and pigmentation, whereas presumed L’ along with OAP3-2/OAGL6-2/OPI in L complexes promotes red spot formation in the perianth. Furthermore, the B functional proteins OAP3-1/OPI and OAGL6-1 in the SP complex could function separately to suppress sepal/petal senescence and promote pedicel abscission, respectively. These findings expand the current knowledge behind the multifunctional evolution of the B and AGL6 genes in plants.


Sign in / Sign up

Export Citation Format

Share Document