sharpness metrics
Recently Published Documents


TOTAL DOCUMENTS

14
(FIVE YEARS 2)

H-INDEX

4
(FIVE YEARS 0)

Author(s):  
Tao Zhang ◽  
Guisheng Liao ◽  
Yachao Li ◽  
Tong Gu ◽  
Tinghao Zhang ◽  
...  

2018 ◽  
Vol 22 (12) ◽  
pp. 6257-6278 ◽  
Author(s):  
Fitsum Woldemeskel ◽  
David McInerney ◽  
Julien Lerat ◽  
Mark Thyer ◽  
Dmitri Kavetski ◽  
...  

Abstract. Streamflow forecasting is prone to substantial uncertainty due to errors in meteorological forecasts, hydrological model structure, and parameterization, as well as in the observed rainfall and streamflow data used to calibrate the models. Statistical streamflow post-processing is an important technique available to improve the probabilistic properties of the forecasts. This study evaluates post-processing approaches based on three transformations – logarithmic (Log), log-sinh (Log-Sinh), and Box–Cox with λ=0.2 (BC0.2) – and identifies the best-performing scheme for post-processing monthly and seasonal (3-months-ahead) streamflow forecasts, such as those produced by the Australian Bureau of Meteorology. Using the Bureau's operational dynamic streamflow forecasting system, we carry out comprehensive analysis of the three post-processing schemes across 300 Australian catchments with a wide range of hydro-climatic conditions. Forecast verification is assessed using reliability and sharpness metrics, as well as the Continuous Ranked Probability Skill Score (CRPSS). Results show that the uncorrected forecasts (i.e. without post-processing) are unreliable at half of the catchments. Post-processing of forecasts substantially improves reliability, with more than 90 % of forecasts classified as reliable. In terms of sharpness, the BC0.2 scheme substantially outperforms the Log and Log-Sinh schemes. Overall, the BC0.2 scheme achieves reliable and sharper-than-climatology forecasts at a larger number of catchments than the Log and Log-Sinh schemes. The improvements in forecast reliability and sharpness achieved using the BC0.2 post-processing scheme will help water managers and users of the forecasting service make better-informed decisions in planning and management of water resources. Highlights. Uncorrected and post-processed streamflow forecasts (using three transformations, namely Log, Log-Sinh, and BC0.2) are evaluated over 300 diverse Australian catchments. Post-processing enhances streamflow forecast reliability, increasing the percentage of catchments with reliable predictions from 50 % to over 90 %. The BC0.2 transformation achieves substantially better forecast sharpness than the Log-Sinh and Log transformations, particularly in dry catchments.


2014 ◽  
Vol 2014 ◽  
pp. 1-13 ◽  
Author(s):  
Zhipeng Cao ◽  
Zhenzhong Wei ◽  
Guangjun Zhang

This work presents a no-reference image sharpness metric based on human blur perception for JPEG2000 compressed image. The metric mainly uses a ringing measure. And a blurring measure is used for compensation when the blur is so severe that ringing artifacts are concealed. We used the anisotropic diffusion for the preliminary ringing map and refined it by considering the property of ringing structure. The ringing detection of the proposed metric does not depend on edge detection, which is suitable for high degraded images. The characteristics of the ringing and blurring measures are analyzed and validated theoretically and experimentally. The performance of the proposed metric is tested and compared with that of some existing JPEG2000 sharpness metrics on three widely used databases. The experimental results show that the proposed metric is accurate and reliable in predicting the sharpness of JPEG2000 images.


Sign in / Sign up

Export Citation Format

Share Document