methane metabolism
Recently Published Documents


TOTAL DOCUMENTS

52
(FIVE YEARS 18)

H-INDEX

15
(FIVE YEARS 2)

2022 ◽  
Author(s):  
Denis K. Ng'etich ◽  
Rawlynce C. Bett ◽  
Charles K. Gachuiri ◽  
Felix M. Kibegwa

Abstract Methane is a greenhouse gas with disastrous consequences when released to intolerable levels. Ruminants produce methane during gut fermentation releasing it through belching and/or flatulence. To better understand the diversity of methanogens and functional enzymes associated with methane metabolism in dairy cows, 48 samples; six rumen and 42 dung contents were collected and analyzed using a shotgun metagenomic approach. The results indicated archaea from 5 phyla, 9 classes, 16 orders, 25 families, 59 genera, and 87 species. Gut sites significantly contributed to the presence and distribution of various methanogens (P<0.01). The class Methanomicrobia was abundant in the rumen samples (~ 39%) and in dung (~44%). The most abundant (~17%) methanogen species identified was Methanocorpusculum labreanum. However, some taxonomic classes were not classified (~ 6% in the rumen and ~4% in the dung). Furthermore, five functional enzymes: Glycine/Serine hydroxy methyltransferase, Formylmethanofuran—tetrahydromethanopterin N-formyltransferase, Formate dehydrogenase, Anaerobic carbon monoxide dehydrogenase and Catalase-peroxidase were associated with methane metabolism. KO0600 module and Enzyme Commissions (1.11.1.6 & 2.1.2.1) were common for dung and rumen fluid’s enzymatic pathways. Functional analysis for the enzymes identified were significant (P<0.05) for 5 metabolism processes. Breeding for tolerable methane emitting dairy cattle for a sustainable environment should be undertaken.


2021 ◽  
Vol 3 (4) ◽  
pp. 405-415
Author(s):  
Binhao Wang ◽  
Xiafei Zheng ◽  
Hangjun Zhang ◽  
Xiaoli Yu ◽  
Yingli Lian ◽  
...  

AbstractSubmerged plants in wetlands play important roles as ecosystem engineers to improve self-purification and promote elemental cycling. However, their effects on the functional capacity of microbial communities in wetland sediments remain poorly understood. Here, we provide detailed metagenomic insights into the biogeochemical potential of microbial communities in wetland sediments with and without submerged plants (i.e., Vallisneria natans). A large number of functional genes involved in carbon (C), nitrogen (N) and sulfur (S) cycling were detected in the wetland sediments. However, most functional genes showed higher abundance in sediments with submerged plants than in those without plants. Based on the comparison of annotated functional genes in the N and S cycling databases (i.e., NCycDB and SCycDB), we found that genes involved in nitrogen fixation (e.g., nifD/H/K/W), assimilatory nitrate reduction (e.g., nasA and nirA), denitrification (e.g., nirK/S and nosZ), assimilatory sulfate reduction (e.g., cysD/H/J/N/Q and sir), and sulfur oxidation (e.g., glpE, soeA, sqr and sseA) were significantly higher (corrected p < 0.05) in vegetated vs. unvegetated sediments. This could be mainly driven by environmental factors including total phosphorus, total nitrogen, and C:N ratio. The binning of metagenomes further revealed that some archaeal taxa could have the potential of methane metabolism including hydrogenotrophic, acetoclastic, and methylotrophic methanogenesis, which are crucial to the wetland methane budget and carbon cycling. This study opens a new avenue for linking submerged plants with microbial functions, and has further implications for understanding global carbon, nitrogen and sulfur cycling in wetland ecosystems.


2021 ◽  
Author(s):  
Panagiotis S. Adam ◽  
George E. Kolyfetis ◽  
Till L.V. Bornemann ◽  
Constantinos E. Vorgias ◽  
Alexander J. Probst

Methane metabolism is among the hallmarks of Archaea, originating very early in their evolution. Other than its two main complexes, methyl-CoM reductase (Mcr) and tetrahydromethanopterin-CoM methyltransferase (Mtr), there exist other genes called "methanogenesis markers" that are believed to participate in methane metabolism. Many of them are Domains of Unknown Function. Here we show that these markers emerged together with methanogenesis. Even if Mcr is lost, the markers and Mtr can persist resulting in intermediate metabolic states related to the Wood-Ljungdahl pathway. Beyond the markers, the methanogenic ancestor was hydrogenotrophic, employing the anaplerotic hydrogenases Eha and Ehb. The selective pressures acting on Eha, Ehb, and Mtr partially depend on their subunits' membrane association. Integrating the evolution of all these components, we propose that the ancestor of all methane metabolizers was an autotrophic H2/CO2 methanogen that could perhaps use methanol but not oxidize alkanes. Hydrogen-dependent methylotrophic methanogenesis has since emerged multiple times independently, both alongside a vertically inherited Mcr or from a patchwork of ancient transfers. Through their methanogenesis genomic remnants, Thorarchaeota and two newly reconstructed order-level lineages in Archaeoglobi and Bathyarchaeota act as metabolically versatile players in carbon cycling of anoxic environments across the globe.


Diversity ◽  
2021 ◽  
Vol 13 (7) ◽  
pp. 323
Author(s):  
Maria Papale ◽  
Carmen Rizzo ◽  
Gabriella Caruso ◽  
Rosabruna La Ferla ◽  
Giovanna Maimone ◽  
...  

Different polar environments (lakes and glaciers), also in Antarctica, encapsulate brine pools characterized by a unique combination of extreme conditions, mainly in terms of high salinity and low temperature. Since 2014, we have been focusing our attention on the microbiology of brine pockets from three lakes in the Northern Victoria Land (NVL), lying in the Tarn Flat (TF) and Boulder Clay (BC) areas. The microbial communities have been analyzed for community structure by next generation sequencing, extracellular enzyme activities, metabolic potentials, and microbial abundances. In this study, we aim at reconsidering all available data to analyze the influence exerted by environmental parameters on the community composition and activities. Additionally, the prediction of metabolic functions was attempted by the phylogenetic investigation of communities by reconstruction of unobserved states (PICRUSt2) tool, highlighting that prokaryotic communities were presumably involved in methane metabolism, aromatic compound biodegradation, and organic compound (proteins, polysaccharides, and phosphates) decomposition. The analyzed cryoenvironments were different in terms of prokaryotic diversity, abundance, and retrieved metabolic pathways. By the analysis of DNA sequences, common operational taxonomic units ranged from 2.2% to 22.0%. The bacterial community was dominated by Bacteroidetes. In both BC and TF brines, sequences of the most thermally tolerant and methanogenic Archaea were detected, some of them related to hyperthermophiles.


2021 ◽  
Vol 12 ◽  
Author(s):  
Haibo Fu ◽  
Liangzhi Zhang ◽  
Chao Fan ◽  
Chuanfa Liu ◽  
Wenjing Li ◽  
...  

Domestication is a key factor of genetic variation; however, the mechanism by which domestication alters gut microbiota is poorly understood. Here, to explore the variation in the structure, function, rapidly evolved genes (REGs), and enzyme profiles of cellulase and hemicellulose in fecal microbiota, we studied the fecal microbiota in wild, half-blood, and domestic yaks based on 16S rDNA sequencing, shotgun-metagenomic sequencing, and the measurement of short-chain-fatty-acids (SCFAs) concentration. Results indicated that wild and half-blood yaks harbored an increased abundance of the phylum Firmicutes and reduced abundance of the genus Akkermansia, which are both associated with efficient energy harvesting. The gut microbial diversity decreased in domestic yaks. The results of the shotgun-metagenomic sequencing showed that the wild yak harbored an increased abundance of microbial pathways that play crucial roles in digestion and growth of the host, whereas the domestic yak harbored an increased abundance of methane-metabolism-related pathways. Wild yaks had enriched amounts of REGs in energy and carbohydrate metabolism pathways, and possessed a significantly increased abundance of cellulases and endohemicellulases in the glycoside hydrolase family compared to domestic yaks. The concentrations of acetic, propionic, n-butyric, i-butyric, n-valeric, and i-valeric acid were highest in wild yaks. Our study displayed the domestic effect on the phenotype of composition, function in gut microbiota, and SCFAs associated with gut microbiota, which had a closely association with the growth performance of the livestock. These findings may enlighten the researchers to construct more links between economic characteristics and gut microbiota, and develop new commercial strains in livestock based on the biotechnology of gut microbiota.


2021 ◽  
Author(s):  
Joel White ◽  
Lena Ström ◽  
Dag Ahrén ◽  
Janne Rinne ◽  
Veiko Lehsten

&lt;p&gt;Microbial communities of methane producing methanogens and consuming methanotrophs play an important role for the earths atmospheric methane budget. Despite their global significance, the functional potential of these communities is poorly understood. To investigate this, we applied the molecular technique, captured metagenomics, to identify the variability in functional diversity of microorganisms involved in the metabolism of methane&lt;sub&gt;&lt;/sub&gt;in an environmentally controlled laboratory study. Nine plant-peat mesocosms dominated by the sedge Eriophorum vaginatum, with varying coverage, were collected from a temperate natural wetland is Sweden and subjected to a simulated growing season. Samples for analysis of captured metagenomes were taken from the top, bottom and root adjacent zone at the end of the experiment. In addition, over the simulated season, measured gas fluxes of carbon dioxide (CO&lt;sub&gt;2&lt;/sub&gt;) and CH&lt;sub&gt;4&lt;/sub&gt;, &amp;#948;&lt;sup&gt;13&lt;/sup&gt;C of emitted CH&lt;sub&gt;4&lt;/sub&gt; and the pore water concentration of dissolved methane and low molecular weight organic acids were recorded. The functional genes resulting from the captured metagenomes had a higher Shannon &amp;#945;-diversity in the root zone when compared to the bottom and top. Sequences coding for methane metabolism were significantly more diverse in the root and bottom zones when compared to the top. However, the frequency of Acetyl-CoA decarbonylase and methane monooxygenase subunit A were significantly higher in the high emitting methane flux category when compared to the medium and low emitting mesocosms. We conclude that captured metagenomic analyses of functional genes provides a good measure of the functional potential methanogenic and methanotrophic microbial communities. This technique can be used to investigate how methanogens and methanotrophs function in peatlands and thus, contribute to the concentration of atmospheric methane.&lt;/p&gt;


Author(s):  
Mario Toubes-Rodrigo ◽  
Sanja Potgieter-Vermaak ◽  
Robin Sen ◽  
Edda Oddsdottir ◽  
David Elliott ◽  
...  

The basal zone of glaciers is characterised by physicochemical properties that are distinct from firnified ice because of strong interactions with underlying substrate. Basal ice ecology and the roles that the microbiota play in biogeochemical cycling, weathering, and proglacial soil formation, remains poorly known. We report bacterial diversity and potential ecological roles at three temperate Icelandic glaciers. We sampled three physically distinct basal ice facies (stratified, dispersed, debris bands) and found biological similarities and differences between them; basal ice character is therefore an important sampling consideration in future studies. High abundance of silicates and Fe-containing minerals could sustain the basal ice ecosystem, in which chemolithotrophic bacteria (~23%), especially Fe-oxidisers and hydrogenotrophs, can fix C, which can be utilised by heterotrophs. Methanogenic-affiliated detected sequences showed that silicate comminution-derived hydrogen can also be utilised for methanogenesis. Metabolism predicted by 16S rRNA diversity revealed that methane metabolism and C-fixation are the most common pathways, indicating the importance of these metabolic routes. Carbon concentrations were low compared to other ecosystems, but we report the highest carbon concentration in basal ice to date. Carbon release from melting basal ice may play an important role in promoting pioneering communities establishment and soil development in deglaciating forelands.


2021 ◽  
Vol 12 ◽  
Author(s):  
Kristina D. Baker ◽  
Colleen T. E. Kellogg ◽  
James W. McClelland ◽  
Kenneth H. Dunton ◽  
Byron C. Crump

In contrast to temperate systems, Arctic lagoons that span the Alaska Beaufort Sea coast face extreme seasonality. Nine months of ice cover up to ∼1.7 m thick is followed by a spring thaw that introduces an enormous pulse of freshwater, nutrients, and organic matter into these lagoons over a relatively brief 2–3 week period. Prokaryotic communities link these subsidies to lagoon food webs through nutrient uptake, heterotrophic production, and other biogeochemical processes, but little is known about how the genomic capabilities of these communities respond to seasonal variability. Replicate water samples from two lagoons and one coastal site near Kaktovik, AK were collected in April (full ice cover), June (ice break up), and August (open water) to represent winter, spring, and summer, respectively. Samples were size fractionated to distinguish free-living and particle-attached microbial communities. Multivariate analysis of metagenomes indicated that seasonal variability in gene abundances was greater than variability between size fractions and sites, and that June differed significantly from the other months. Spring (June) gene abundances reflected the high input of watershed-sourced nutrients and organic matter via spring thaw, featuring indicator genes for denitrification possibly linked to greater organic carbon availability, and genes for processing phytoplankton-derived organic matter associated with spring blooms. Summer featured fewer indicator genes, but had increased abundances of anoxygenic photosynthesis genes, possibly associated with elevated light availability. Winter (April) gene abundances suggested low energy inputs and autotrophic bacterial metabolism, featuring indicator genes for chemoautotrophic carbon fixation, methane metabolism, and nitrification. Winter indicator genes for nitrification belonged to Thaumarchaeota and Nitrosomonadales, suggesting these organisms play an important role in oxidizing ammonium during the under-ice period. This study shows that high latitude estuarine microbial assemblages shift metabolic capabilities as they change phylogenetic composition between these extreme seasons, providing evidence that these communities may be resilient to large hydrological events in a rapidly changing Arctic.


2020 ◽  
Author(s):  
Diego Rojas-Gätjens ◽  
Paola Fuentes-Schweizer ◽  
Keilor Rojas-Jimenez ◽  
Danilo Pérez-Pantoja ◽  
Roberto Avendaño ◽  
...  

AbstractThe search for microorganisms that degrade hydrocarbons is highly relevant because it enables the bioremediation of these substances cheaply and without dangerous by-products. In this work, we studied the microbial communities of an exploratory oil well, abandoned a century ago, located in the Cahuita National Park of Costa Rica. Cahuita well is characterized by a continuous efflux of methane and the presence of a mixture of hydrocarbons including C2-dibenzothiophene, phenanthrene or anthracene, fluoranthene pyrene, dibenzothiophene, tricyclic terpanes, pyrene, sesquiterpenes, sterane and n-alkanes. Based on the analysis of 16S rRNA gene amplicons, we detected a significant abundance of methylotrophic bacteria (Methylobacillus (6.3-26.0 % of total reads) and Methylococcus (4.1-30.6 %)) and the presence of common genera associated with hydrocarbon degradation, such as Comamonas (0.8-4.6 %), Hydrogenophaga (1.5-3.3 %) Rhodobacter (1.0-4.9 %) and Flavobacterium (1.1-6.5 %). We evidenced the presence of methane monooxygenase (MMO) activities, responsible for the first step in methane metabolism, by amplifying the pmo gene from environmental DNA. We also isolated a strain of Methylorubrum rhodesianum, which was capable of using methanol as its sole carbon source. This work represents a contribution to the understanding of the ecology of communities of microorganisms in environments with permanently high concentrations of methane and hydrocarbons, which also has biotechnological implications for the bioremediation of highly polluting petroleum components.


Sign in / Sign up

Export Citation Format

Share Document