endogenous genes
Recently Published Documents


TOTAL DOCUMENTS

253
(FIVE YEARS 98)

H-INDEX

34
(FIVE YEARS 7)

2022 ◽  
Vol 23 (2) ◽  
pp. 696
Author(s):  
Zhiqi Deng ◽  
Liqun Ma ◽  
Peiyu Zhang ◽  
Hongliang Zhu

Small RNAs are significant regulators of gene expression, which play multiple roles in plant development, growth, reproductive and stress response. It is generally believed that the regulation of plants’ endogenous genes by small RNAs has evolved from a cellular defense mechanism for RNA viruses and transposons. Most small RNAs have well-established roles in the defense response, such as viral response. During viral infection, plant endogenous small RNAs can direct virus resistance by regulating the gene expression in the host defense pathway, while the small RNAs derived from viruses are the core of the conserved and effective RNAi resistance mechanism. As a counter strategy, viruses evolve suppressors of the RNAi pathway to disrupt host plant silencing against viruses. Currently, several studies have been published elucidating the mechanisms by which small RNAs regulate viral defense in different crops. This paper reviews the distinct pathways of small RNAs biogenesis and the molecular mechanisms of small RNAs mediating antiviral immunity in plants, as well as summarizes the coping strategies used by viruses to override this immune response. Finally, we discuss the current development state of the new applications in virus defense based on small RNA silencing.


2022 ◽  
Vol 29 ◽  
Author(s):  
Annu ◽  
Saleha Rehman ◽  
Bushra Nabi ◽  
Ali Sartaj ◽  
Sanjula Baboota ◽  
...  

Abstract: Central nervous system (CNS) disorders account for boundless socioeconomic burdens with devastating effects among the population, especially the elderly. The major symptoms of these disorders are neurodegeneration, neuroinflammation, and cognitive dysfunction caused by inherited genetic mutations or by genetic and epigenetic changes due to injury, environmental factors, and disease-related events. Currently available clinical treatment for CNS diseases, i.e., Alzheimer’s disease, Parkinson’s disease, stroke, and brain tumor have significant side effects and are largely unable to halt the clinical progression. So, gene therapy displays a new paradigm in the treatment of these disorders with some modalities, varying from suppression of endogenous genes to expression of exogenous genes. Both viral and non-viral vectors are commonly used for gene therapy. Viral vectors are quite effective but associated with immunogenicity and carcinogenicity like severe side effects, and poor target cell specificity. Thus, non-viral vectors, mainly nanotherapeutics like nanoparticles (NPs), opt-out to be a realistic approach in gene therapy in achieving higher efficacy. NPs demonstrate a new avenue in pharmacotherapy for the delivery of drugs or genes to their selective cells or tissue thus providing concentrated and constant drug delivery to targeted tissues, minimizing systemic toxicity and side effects. The current review will emphasize the role of NPs in mediating gene therapy for CNS disorders treatment. Moreover, the challenges and perspectives of NPs in gene therapy will be summarized.


Plants ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 57
Author(s):  
Victoria Súnico ◽  
José Javier Higuera ◽  
Francisco J. Molina-Hidalgo ◽  
Rosario Blanco-Portales ◽  
Enriqueta Moyano ◽  
...  

Under climate change, the spread of pests and pathogens into new environments has a dramatic effect on crop protection control. Strawberry (Fragaria spp.) is one the most profitable crops of the Rosaceae family worldwide, but more than 50 different genera of pathogens affect this species. Therefore, accelerating the improvement of fruit quality and pathogen resistance in strawberry represents an important objective for breeding and reducing the usage of pesticides. New genome sequencing data and bioinformatics tools has provided important resources to expand the use of synthetic biology-assisted intragenesis strategies as a powerful tool to accelerate genetic gains in strawberry. In this paper, we took advantage of these innovative approaches to create four RNAi intragenic silencing cassettes by combining specific strawberry new promoters and pathogen defense-related candidate DNA sequences to increase strawberry fruit quality and resistance by silencing their corresponding endogenous genes, mainly during fruit ripening stages, thus avoiding any unwanted effect on plant growth and development. Using a fruit transient assay, GUS expression was detected by the two synthetic FvAAT2 and FvDOF2 promoters, both by histochemical assay and qPCR analysis of GUS transcript levels, thus ensuring the ability of the same to drive the expression of the silencing cassettes in this strawberry tissue. The approaches described here represent valuable new tools for the rapid development of improved strawberry lines.


2021 ◽  
Vol 17 (12) ◽  
pp. e1010091
Author(s):  
Tomoko Takahashi ◽  
Steven M. Heaton ◽  
Nicholas F. Parrish

There are strong incentives for human populations to develop antiviral systems. Similarly, genomes that encode antiviral systems have had strong selective advantages. Protein-guided immune systems, which have been well studied in mammals, are necessary for survival in our virus-laden environments. Small RNA–directed antiviral immune systems suppress invasion of cells by non-self genetic material via complementary base pairing with target sequences. These RNA silencing-dependent systems operate in diverse organisms. In mammals, there is strong evidence that microRNAs (miRNAs) regulate endogenous genes important for antiviral immunity, and emerging evidence that virus-derived nucleic acids can be directly targeted by small interfering RNAs (siRNAs), PIWI-interacting RNAs (piRNAs), and transfer RNAs (tRNAs) for protection in some contexts. In this review, we summarize current knowledge of the antiviral functions of each of these small RNA types and consider their conceptual and mechanistic overlap with innate and adaptive protein-guided immunity, including mammalian antiviral cytokines, as well as the prokaryotic RNA-guided immune system, CRISPR. In light of recent successes in delivery of RNA for antiviral purposes, most notably for vaccination, we discuss the potential for development of small noncoding RNA–directed antiviral therapeutics and prophylactics.


2021 ◽  
Author(s):  
Matias Ilmari Autio ◽  
Efthymios Motakis ◽  
Arnaud Perrin ◽  
Talal Bin Amin ◽  
Zenia Tiang ◽  
...  

Stable expression of transgenes is essential in both therapeutic and research applications. Traditionally, transgene integration has been accomplished via viral vectors in a semi-random fashion, but with inherent integration site biases linked to the type of virus used. The randomly integrated transgenes may undergo silencing and more concerningly, can also lead to dysregulation of endogenous genes. Gene dysregulation can lead to malignant transformation of cells and has unfortunately given rise to cases of leukaemia in gene therapy trials. Genomic safe harbour (GSH) loci have been proposed as safe sites for transgene integration. To date, a number of sites in the human genome have been used for directed integration; however none of these pass scrutiny as bona fide GSH. Here, we conducted a computational analysis to identify 25 putative GSH loci that reside in active chromosomal compartments. We validated stable transgene expression in three GSH sites in vitro using human embryonic stem cells (hESCs) and their differentiated progeny. Furthermore, for easy targeted transgene expression, we have engineered constitutive landing pad expression constructs into the three validated GSH in hESCs.


2021 ◽  
Author(s):  
Xiao Zheng ◽  
Jiajun Cui ◽  
Yixuan Wang ◽  
Jing Zhang ◽  
Chaochen Wang

AbstractCRISPR-based gene activation (CRISPRa) or interference (CRISPRi) are powerful and easy-to-use approaches to modify the transcription of endogenous genes in eukaryotes. Successful CRISPRa/i requires sgRNA binding and alteration of local chromatin structure, hence largely depends on the original epigenetic status of the target. Consequently, the efficacy of the CRISPRa/i varies in a wide range when applied to target different gene loci, while a reliable prediction tool is unavailable. To address this problem, we integrated published single cell RNA-Seq data involved CRISPRa/i and epigenomic profiles from K562 cells, identified the significant epigenetic features contributing to CRISPRa/i efficacy by ranking the weight of each feature. We further established a mathematic model and built a user-friendly webtool to predict the CRISPRa/i efficacy of customer-designed sgRNA in different cells. Moreover, we experimentally validated our model by employing CROP-Seq assays. Our work provides both the epigenetic insights into CRISPRa/i and an effective tool for the users.


2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Maria Luz Annacondia ◽  
German Martinez

Abstract Background RNA silencing has an important role mediating sequence-specific virus resistance in plants. The complex interaction of viruses with RNA silencing involves the loading of viral small interfering RNAs (vsiRNAs) into its host ARGONAUTE (AGO) proteins. As a side effect of their antiviral activity, vsiRNAs loading into AGO proteins can also mediate the silencing of endogenous genes. Here, we analyze at the genome-wide level both aspects of the interference of cucumber mosaic virus (CMV) with the RNA silencing machinery of Arabidopsis thaliana. Results We observe CMV-derived vsiRNAs affect the levels of endogenous sRNA classes. Furthermore, we analyze the incorporation of vsiRNAs into AGO proteins with a described antiviral role and the viral suppressor of RNA silencing (VSR) 2b, by combining protein immunoprecipitation with sRNA high-throughput sequencing. Interestingly, vsiRNAs represent a substantial percentage of AGO-loaded sRNAs and displace other endogenous sRNAs. As a countermeasure, the VSR 2b loaded vsiRNAs and mRNA-derived siRNAs, which affect the expression of the genes they derive from. Additionally, we analyze how vsiRNAs incorporate into the endogenous RNA silencing pathways by exploring their target mRNAs using parallel analysis of RNA end (PARE) sequencing, which allow us to identify vsiRNA-targeted genes genome-wide. Conclusions This work exemplifies the complex relationship of RNA viruses with the endogenous RNA silencing machinery and the multiple aspects of virus resistance and virulence that this interaction induces.


2021 ◽  
Author(s):  
Stuart Sevier ◽  
Sahand Hormoz

All biological processes ultimately come from physical interactions. The mechanical properties of DNA play a critical role in transcription. RNA polymerase can over or under twist DNA (referred to as DNA supercoiling) when it moves along a gene resulting in mechanical stresses in DNA that impact its own motion and that of other polymerases. For example, when enough supercoiling accumulates, an isolated polymerase halts and transcription stops. DNA supercoiling can also mediate non-local interactions between polymerases that shape gene expression fluctuations. Here, we construct a comprehensive model of transcription that captures how RNA polymerase motion changes the degree of DNA supercoiling which in turn feeds back into the rate at which polymerases are recruited and move along the DNA. Surprisingly, our model predicts that a group of three or more polymerases move together at a constant velocity and sustain their motion (forming what we call a polymeton) whereas one or two polymerases would have halted. We further show that accounting for the impact of DNA supercoiling on both RNA polymerase recruitment and velocity recapitulates empirical observations of gene expression fluctuations. Finally, we propose a mechanical toggle switch whereby interactions between genes are mediated by DNA twisting as opposed to proteins. Understanding the mechanical regulation of gene expression provides new insights into how endogenous genes can interact and informs the design of new forms of engineered interactions.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Md. Lutfur Rahman ◽  
Toshinori Hyodo ◽  
Sivasundaram Karnan ◽  
Akinobu Ota ◽  
Muhammad Nazmul Hasan ◽  
...  

AbstractTandem paired nicking (TPN) is a method of genome editing that enables precise and relatively efficient targeted knock-in without appreciable restraint by p53-mediated DNA damage response. TPN is initiated by introducing two site-specific nicks on the same DNA strand using Cas9 nickases in such a way that the nicks encompass the knock-in site and are located within a homologous region between a donor DNA and the genome. This nicking design results in the creation of two nicks on the donor DNA and two in the genome, leading to relatively efficient homology-directed recombination between these DNA fragments. In this study, we sought to identify the optimal design of TPN experiments that would improve the efficiency of targeted knock-in, using multiple reporter systems based on exogenous and endogenous genes. We found that efficient targeted knock-in via TPN is supported by the use of 1700–2000-bp donor DNAs, exactly 20-nt-long spacers predicted to be efficient in on-target cleavage, and tandem-paired Cas9 nickases nicking at positions close to each other. These findings will help establish a methodology for efficient and precise targeted knock-in based on TPN, which could broaden the applicability of targeted knock-in to various fields of life science.


Author(s):  
Gerard Terradas ◽  
Anita Hermann ◽  
Anthony A James ◽  
William McGinnis ◽  
Ethan Bier

Abstract Gene drives are programmable genetic elements that can spread beneficial traits into wild populations to aid in vector-borne pathogen control. Two different drives have been developed for population modification of mosquito vectors. The Reckh drive (vasa-Cas9) in Anopheles stephensi displays efficient allelic conversion through males but generates frequent drive-resistant mutant alleles when passed through females. In contrast, the AgNos-Cd1 drive (nos-Cas9) in An. gambiae achieves almost complete allelic conversion through both genders. Here, we examined the subcellular localization of RNA transcripts in the mosquito germline. In both transgenic lines, Cas9 is strictly co-expressed with endogenous genes in stem and pre-meiotic cells of the testes, where both drives display highly efficient conversion. However, we observed distinct co-localization patterns for the two drives in female reproductive tissues. These studies suggest potential determinants underlying efficient drive through the female germline. We also evaluated expression patterns of alternative germline genes for future gene-drive designs.


Sign in / Sign up

Export Citation Format

Share Document