spot welds
Recently Published Documents


TOTAL DOCUMENTS

687
(FIVE YEARS 108)

H-INDEX

45
(FIVE YEARS 6)

Author(s):  
Fethi Dahmene ◽  
Slah Yaacoubi ◽  
Mahjoub El Mountassir ◽  
Abd Ennour Bouzenad ◽  
Pierre Rabaey ◽  
...  

Author(s):  
K Siimut ◽  
MFR Zwicker ◽  
CV Nielsen

Plug failures have been observed in three-sheet spot welds, where the weld nugget did not penetrate into the outer sheet. Such solid-state bonds were found to be formed as a result of high contact pressure and temperature during welding. The strength of single spot welds was studied in a three-sheet combination (0.61 mm DX54 on two 1.21 mm DP600) with nugget penetrations into the thin sheet below 40%. The static strength was evaluated by tensile shear, cross tension and mechanized peel testing, and fatigue tests were carried out in tensile shear configuration at 30 Hz and mean load of 2 kN. It was found that loading of the specimens in tensile shear, mechanized peel and cross tension tests leads to a plug failure and a ductile fracture of the thin sheet. The weld strength is not correlated with the nugget penetration into the thin sheet but is determined by the area of the bonded interface, instead, as shown by peel and cross tension tests. Fatigue tests revealed that the specimens break by a plug failure. The failure mechanism was found to be ductile for the highest load range after approximately 33 000 cycles. At lower load ranges, evidence of a crack was found in the DX54 sheet, leading to higher stress concentration and subsequent ductile fracture. It was estimated that a load range of 940 N leads to failure after approximately 106 cycles.


Author(s):  
Cheng Luo ◽  
Yansong Zhang ◽  
Michael Oelscher ◽  
Yandong Shi ◽  
Niels Pasligh ◽  
...  

Abstract Application of maraging steels via selective laser melting process in the automotive industry was unavoidably involved in the resistance spot welding with conventional steels. Due to the rapid cooling rate of welding process, selective laser melted maraging steels with unique chemical components and stack microstructure could induced the different microstructural evolution, resulting in the complicated fracture behavior in the spot welds. This paper developed a FEA model to predict the fracture mode of spot welds of DP600 to maraging steel and the effect of test conditions and printing orientations were studied. A method was proposed to calculate the material properties of fusion zone by introducing the combined effect of melting DP600 and maraging steels via selective laser melting, resulting in the accurate prediction of fracture mode and strength of spot welds. An interlayer with lower strength was found around the fusion zone and the fracture path propagated in the region, resulting in the partial interfacial failure of spot welds. Meanwhile, the printing orientation had no significant effect on the fracture mode and strength of spot welds, but the different material properties of maraging steels could affect the fracture displacement of spot welds. These findings could pave a way to guide the application of maraging steels via selective laser melting process in multiple industries, especially in the automotive industry.


Materials ◽  
2021 ◽  
Vol 14 (23) ◽  
pp. 7180
Author(s):  
Takeshi Chino ◽  
Atsushi Kunugi ◽  
Toshikazu Kawashima ◽  
Goro Watanabe ◽  
Cao Can ◽  
...  

In a car body, there exist thousands of resistance spot welds, which may induce large deformation during the manufacturing process. Therefore, it is expected that automotive industries will develop a method and a computing system for the fast and simple prediction of its deformation. Although the inherent strain method has been used for the fast prediction of arc welding deformation, it has not been applied to resistance spot welding so far. Additionally, the electrical-thermal-mechanical coupling analysis for the deformation induced by resistance spot welding is complicated and much more time-consuming. Therefore, in this study, a nugget model of the resistance spot weld has been developed, and the inherent strain method is extended for use in the fast prediction of resistance spot welding deformation. In addition, the deformation of a vehicle part with 23 resistance spot welds was efficiently predicted within around 90 min using the inherent strain method, displaying good accuracy compared with the measurement.


Sign in / Sign up

Export Citation Format

Share Document