male pronucleus
Recently Published Documents


TOTAL DOCUMENTS

103
(FIVE YEARS 10)

H-INDEX

29
(FIVE YEARS 1)

2021 ◽  
Vol 19 (1) ◽  
Author(s):  
Kenji Ezoe ◽  
Tetsuya Miki ◽  
Tadashi Okimura ◽  
Kazuo Uchiyama ◽  
Akiko Yabuuchi ◽  
...  

Abstract Background Information regarding the influence of cytoplasmic events during fertilisation on the clinical outcome remains limited. The cytoplasmic halo is one of these events. A previous study that used time-lapse technology found an association of the presence and morphokinetics of the cytoplasmic halo with cleavage patterns, development to the blastocyst stage, and the ongoing pregnancy rate after blastocyst transfer. Therefore, the cytoplasmic halo may be a useful predictor of the pregnancy outcome after cleaved embryo transfer. This study evaluated the ability of the cytoplasmic halo to predict a live birth after fresh cleaved embryo transfer on day 2, and sought to identify factors potentially influencing the presence and morphokinetics of the halo. Methods A total of 902 embryos cultured in the EmbryoScope+® time-lapse system and subjected to single fresh cleaved embryo transfer were retrospectively analysed. The presence and duration of a cytoplasmic halo were annotated. The initial positions of the pronuclei were also observed. The correlation between the cytoplasmic halo and live birth was evaluated and the association of the cytoplasmic halo with patient, cycle, and embryonic characteristics was determined. Results Absence of a cytoplasmic halo was associated with a significant decrease in the likelihood of a live birth after fresh cleaved embryo transfer. Prolongation of the halo, especially the duration of central repositioning of cytoplasmic granules, had an adverse impact on the live birth rate. The characteristics of the cytoplasmic halo were not affected by the ovarian stimulation method used, female age, the serum steroid hormone level on the day of trigger, or semen quality. However, the cytoplasmic halo was significantly affected by male age, oocyte diameter, and the initial position of the male pronucleus. Conclusions Absence or prolongation of the cytoplasmic halo was negatively correlated with the live birth rate after fresh cleaved embryo transfer. The characteristics of the cytoplasmic halo were strongly associated with oocyte diameter, male age, and the initial position of the male pronucleus. These findings indicate that the characteristics of the cytoplasmic halo can be used to select more competent embryos for transfer at the cleavage stage.


Zygote ◽  
2021 ◽  
pp. 1-5
Author(s):  
Natsumi Okajima ◽  
Wei Xiao ◽  
Alex Lopata ◽  
Tadashi Sankai ◽  
Lubna Yasmin ◽  
...  

Summary Numerous studies have reported comparisons of the nuclear-to-cytoplasmic (NC) ratio during mitosis. However, little information is known about how the pronuclear size is regulated and determined at the end of meiosis II in mammalian zygotes. The present study aims to analyze the NC ratio of female and male pronuclei, and also to compare the size of single pronuclei using photographs that were obtained during experiments to create chimeric hermaphrodites from 2-cell oocytes. The volume of both the female and the male pronucleus was found to correlate with the volume of the oocyte cytoplasm. The NC ratio of the male pronucleus was greater than that of the female pronucleus. The NC ratio of the average volume of the female and male pronuclei was greater than the NC ratio of the mononucleate oocytes. The occurrence of 1PN oocytes was significantly higher when the volume of cytoplasm was lower than the cut-off value. These results indicated that the NC ratio is retained during pronuclear formation. A higher NC ratio in male compared with the female pronucleus indicated structural and/or molecular difference between the two pronuclei. 1PN formation may occur when sperm enters close to the MII spindle.


Reproduction ◽  
2021 ◽  
Author(s):  
Rowena Smith ◽  
Susan J Pickering ◽  
Anna Kopakaki ◽  
Kj Thong ◽  
Richard A Anderson ◽  
...  

Elucidating the mechanisms underpinning fertilisation is essential to optimising IVF procedures. One of the critical steps involves paternal chromatin reprogramming, in which compacted sperm chromatin packed by protamines is removed by oocyte factors and new histones, including histone H3.3, are incorporated. HIRA is the main H3.3 chaperone governing this protamine-to-histone exchange. Failure of this step results in abnormally fertilised zygotes containing only 1 pronucleus (1PN), in contrast to normal two-pronuclei (2PN) zygotes. 1PN zygotes are frequently observed in IVF treatments, but the genotype-phenotype correlation remains elusive. We investigated the maternal functions of two other molecules of the Hira complex, Cabin1 and Ubn1, in mouse. Loss-of-function Cabin1 and Ubn1 mouse models were developed: their zygotes displayed an abnormal 1PN zygote phenotype. We then studied human 1PN zygotes and found that the HIRA complex was absent in 1PN zygotes that lacked the male pronucleus. This shows that the role of the HIRA complex in male pronucleus formation potentially has coherence from mice to humans. Furthermore, rescue experiments in mouse showed that the abnormal 1PN phenotype derived from Hira mutants could be resolved by overexpression of HIRA. We have demonstrated that HIRA complex regulates male pronucleus formation in mice and is implicated in humans, that both CABIN1 and UBN1 components of the HIRA complex are equally essential for male pronucleus formation, and that rescue is feasible.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Kathleen Scheffler ◽  
Julia Uraji ◽  
Ida Jentoft ◽  
Tommaso Cavazza ◽  
Eike Mönnich ◽  
...  

AbstractA new life begins with the unification of the maternal and paternal chromosomes upon fertilization. The parental chromosomes first become enclosed in two separate pronuclei near the surface of the fertilized egg. The mechanisms that then move the pronuclei inwards for their unification are only poorly understood in mammals. Here, we report two mechanisms that act in concert to unite the parental genomes in fertilized mouse eggs. The male pronucleus assembles within the fertilization cone and is rapidly moved inwards by the flattening cone. Rab11a recruits the actin nucleation factors Spire and Formin-2 into the fertilization cone, where they locally nucleate actin and further accelerate the pronucleus inwards. In parallel, a dynamic network of microtubules assembles that slowly moves the male and female pronuclei towards the cell centre in a dynein-dependent manner. Both mechanisms are partially redundant and act in concert to unite the parental pronuclei in the zygote’s centre.


Fertilization ◽  
2020 ◽  
pp. 181-200
Author(s):  
Frank J. Longo
Keyword(s):  

2020 ◽  
Author(s):  
Rowena Smith ◽  
Sue Pickering ◽  
Anna Kopakaki ◽  
K Joo Thong ◽  
Richard A Anderson ◽  
...  

AbstractElucidating the underlining mechanisms underpinning successful fertilisation is imperative in optimising IVF treatments, and may lead to a specific diagnosis and therefore potential treatment for some infertile couples. One of the critical steps involves paternal chromatin reprogramming, in which compacted sperm chromatin packed by protamines is removed by oocyte factors and new histones, including histone H3.3, are incorporated. This step is critical for the formation of the male pronucleus, without which the zygote contains only 1 pronucleus (1PN), in contrast to normally fertilised zygotes with two-pronuclei (2PN). 1PN zygotes are a frequently observed phenomenon in IVF treatments, therefore aberrant mechanism of action controlling paternal chromatin repackaging may be an important cause of abnormal fertilisation. Hira is the main H3.3 chaperone that governs this protamine-to-histone exchange. In this study, we investigated the maternal functions of two other molecules of the Hira complex, Cabin1 and Ubn1 in the mouse. Loss-of-function Cabin1 and Ubn1 mouse models were developed: their zygotes displayed abnormal 1PN zygote phenotypes, similar to the phenotype of Hira mutants. We then studied human 1PN zygotes, and found that the Hira complex was absent in 1PN zygotes which were lacking the male pronucleus. This result confirms that the role of the Hira complex in male pronucleus formation has coherence from mice to humans. Furthermore, rescue experiments showed that the abnormal 1PN phenotype derived from Hira mutants could be resolved by overexpression of Hira in the mouse oocytes. In summary, we have provided evidence of the role of Hira complex in regulating male pronucleus formation in both mice and humans, that both Cabin1 and Ubn1 components of the Hira complex are equally essential for male pronucleus formation, and that this can be rescued. We present a proof-of-concept experiment that could potentially lead to a personalised IVF therapy for oocyte defects.


Cells ◽  
2020 ◽  
Vol 9 (2) ◽  
pp. 505 ◽  
Author(s):  
Johnathan L. Meaders ◽  
David R. Burgess

The zygote is defined as a diploid cell resulting from the fusion of two haploid gametes. Union of haploid male and female pronuclei in many animals occurs through rearrangements of the microtubule cytoskeleton into a radial array of microtubules known as the sperm aster. The sperm aster nucleates from paternally-derived centrioles attached to the male pronucleus after fertilization. Nematode, echinoderm, and amphibian eggs have proven as invaluable models to investigate the biophysical principles for how the sperm aster unites male and female pronuclei with precise spatial and temporal regulation. In this review, we compare these model organisms, discussing the dynamics of sperm aster formation and the different force generating mechanism for sperm aster and pronuclear migration. Finally, we provide new mechanistic insights for how sperm aster growth may influence sperm aster positioning.


2020 ◽  
Vol 32 (2) ◽  
pp. 182
Author(s):  
I. Menéndez-Blanco ◽  
F. Ariu ◽  
A. Piras ◽  
S. Nieddu ◽  
M. Paramio ◽  
...  

Freeze-drying is a novel technique that permits the storage of semen at room temperature for long time periods, retaining their fertilizing capacity. The main objective of this work was to compare the fertilization ability of frozen-thawed (FT) and freeze-dried (FD) ram semen following intracytoplasmic sperm injection (ICSI) of invitro-matured (IVM) sheep oocytes. Oocytes were recovered by slicing the ovaries of slaughtered sheep. Selected cumulus-oocyte complexes (COCs) were IVM for 24h in tissue culture medium 199 (TCM-199) supplemented with 10% heat-treated oestrous sheep serum (ESS), 0.36mM pyruvate, FSH (1IUmL−1), and luteinising hormone (LH; 1IUmL−1) under mineral oil in a humidified atmosphere of 5% CO2, at 38.5°C. Semen was collected from fertile adult rams using an artificial vagina and processed for (1) freezing and thawing (Khalifa and Lymberopoulos, 2013 Cell Tissue Bank 14, 687-698; https://doi.org/10.1007/s10561-012-9357-6) or (2) freeze-drying and rehydration according to Arav et al. (2018 J. Assist. Reprod. Genet. 35, 1149-115; https://doi.org/10.1007/s10815-018-1145-1) protocols. For FD protocol, sperm samples were diluted in a sugar solution of trehalose and sorbitol (LyoB) and dehydrated for 24h. Later, the samples were rehydrated in a warming solution and diluted in TCM-199 before ICSI. After maturation, metaphase II (MII) oocytes with a polar body were injected with FT or FD sperm. Briefly, oocytes were transferred into groups of six in an ICSI dish containing 6-µL drops of holding medium (TCM-199 + 5% fetal bovine serum) and 3-µL drops of PVP for the sperm samples. Injection was carried out with an inverted microscope (Olympus IX73) connected to a micromanipulation system (Narishige) using ICSI pipettes with 7-µm internal diameter. Within 1h, ICSI oocytes were activated with 5 µM ionomycin for 4min and invitro cultured in modified synthetic oviductal fluid medium (Bogliolo et al. 2011 Reprod. Fertil. Dev. 23, 809-817; https://doi.org/10.1071/RD11023). After 17-21h, injected oocytes were fixed and stained in a solution of ethanol Hoechst 33342 and classified as FPN (one female pronucleus and one condensed sperm head), MPN (one male pronucleus and one MII), 2PN (two pronuclei, male and female), 3PN (three or more pronuclei), and NPN (no pronuclei). Data were analysed using analysis of variance (two-way ANOVA) followed by Tukey post hoc test with SAS software, version 9.4. The ICSI-FD group had a higher number of NPN and a lower number of 2PN than did the ICSI-FT group (P<0.05). We think that more technical advances in the FD process as well as the rehydration procedure are necessary to improve the application of FD ovine semen for invitro fertilization by ICSI in sheep, but in any case these results have showed that FD could be a useful tool for the future of invitro embryo production. Table 1.Pronuclear formation at 17-21h post-injection1 Treatment n FPN MPN 2PN 3PN NPN FT 71 9.66±4.12 4.26±1.48 48.13±2.79a 5.97±4.16 31.98±6.75a FD 65 6.16±2.26 1.39±1.39 20.15±4.14b 10.57±6.59 61.73±6.89b a,bValues in the same column with different superscript letters differ significantly (P<0.05). 1Data are presented as mean±s.e.m. FPN=female pronucleus, MPN=one male pronucleus and one metaphase II oocyte, 2PN=two pronuclei, male and female, 3PN=three or more pronuclei, NPN=no pronuclei. Funding was provided by Spanish MINECO Grant AGL2017-85837-R, Spanish MECD pre-doctoral grant FPU15/00773, and Spanish MECD mobility grant EST18/00472 to Irene Menéndez Blanco.


2019 ◽  
Vol 23 (2) ◽  
pp. 160-167
Author(s):  
Iu. A. Il’ina ◽  
A. Yu. Konev

Chromatin assembly is a fundamental process essential for chromosome duplication subsequent to DNA replication. In addition, histone removal and incorporation take place constantly throughout the cell cycle in the course of DNA-utilizing processes, such as transcription, damage repair or recombination. In vitro studies have revealed that nucleosome assembly relies on the combined action of core histone chaperones and ATP-utilizing molecular motor proteins such as ACF or CHD1. Despite extensive biochemical characterization of ATP-dependent chromatin assembly and remodeling factors, it has remained unclear to what extent nucleosome assembly is an ATP-dependent process in vivo. Our original and published data about the functions of ATP-dependent chromatin assembly and remodeling factors clearly demonstrated that these proteins are important for nucleosome assembly and histone exchange in vivo. During male pronucleus reorganization after fertilization CHD1 has a critical role in the genomescale, replication-independent nucleosome assembly involving the histone variant H3.3. Thus, the molecular motor proteins, such as CHD1, function not only in the remodeling of existing nucleosomes but also in de novo nucleosome assembly from DNA and histones in vivo. ATP-dependent chromatin assembly and remodeling factors have been implicated in the process of histone exchange during transcription and DNA repair, in the maintenance of centromeric chromatin and in the loading and remodeling of nucleosomes behind a replication fork. Thus, chromatin remodeling factors are involved in the processes of both replication-dependent and replication-independent chromatin assembly. The role of these proteins is especially prominent in the processes of large-scale chromatin reorganization; for example, during male pronucleus formation or in DNA repair. Together, ATP-dependent chromatin assembly factors, histone chaperones and chromatin modifying enzymes form a “chromatin integrity network” to ensure proper maintenance and propagation of chromatin landscape.


2019 ◽  
Vol 75 (01) ◽  
pp. 6181-2019
Author(s):  
ALEKSANDRA KRAWCZYK ◽  
JADWIGA JAWORSKA-ADAMU

A thorough understanding of the mechanisms leading to the interaction between the sperm and the ovum in the process of fertilization in birds can facilitate more effective programming and control of the reproduction of these animals in breeding farms. In addition, it may allow the introduction of extracorporeal fertilization techniques, which may be important in the creation of transgenic animals and the reproduction of endangered species. In birds, the process of fertilization is not well known. It is conditioned by a series of interactions between mature reproductive cells. Oocytes are formed in the ovarian follicles of the left ovary. After ovulation, an ovum in the metaphase of the second meiotic division enters the oviduct along with the inner perivitelline layer (IPVL). It gets fertilized in this infundibulum. Male gametes are formed in paired testes located in the abdominal cavity. Sperm cells in the female reproductive tract do not require capacitation and are already fully capable of fertilization. As a result of internal insemination, male reproductive cells enter the oviduct. In this organ, they are selected and stored in the primary and secondary sperm storage tubules of the mucous membrane. They are released in batches shortly before ovulation. After reaching the oocyte, the sperm binds to the IPVL. This induces an acrosomal reaction that allows the male reproductive cells to penetrate to the surface of the oocyte, especially at the germinal pole. Next, as a result of physiological polyspermy, many sperm cells reach the ooplasm where they form haploid male pronucleus. This phenomenon is necessary to activate an polylecithal egg and produce a haploid female pronucleus. In the final stage, the female pronucleus merges with the single male pronucleus, which leads to the formation of a diploid zygote. The excess male pronuclei present in ooplasm are broken down by endonucleases (DNases). Understanding the mechanisms leading to the interaction between sperm and oocyte in birds may allow for more accurate programming and breeding of these animals in poultry farms and the introduction of extracorporeal fertilization techniques. In addition, it could be useful for the reproduction of endangered bird species


Sign in / Sign up

Export Citation Format

Share Document