chromatographic fractionation
Recently Published Documents


TOTAL DOCUMENTS

191
(FIVE YEARS 13)

H-INDEX

28
(FIVE YEARS 2)

2020 ◽  
Author(s):  
Alberto Alvarez Fernandez ◽  
Barry Reid ◽  
Jugal Suthar ◽  
Swan Choy ◽  
Maximiliano Jesus Jara Fornerod ◽  
...  

Mesoporous inorganic thin films are promising materials architectures for a variety of applications, including sensing, catalysis, protective coatings, energy generation and storage. In many cases, precise control over a bicontinuous porous network on the 10-nm length scale is crucial for their operation. A particularly promising route for structure formation utilizes block copolymer (BCP) micelles in solution as sacrificial structure-directing agents for the co-assembly of inorganic precursors. This method offers pore size control via the molecular weight of the pore forming block and is compatible with broad materials library. On the other hand, the molecular weight dependence impedes continuous pore tuning and the intrinsic polymer dispersity presents challenges to the pore size homogeneity. To this end, we demonstrate how chromatographic fractionation of BCPs provides a powerful method to control the pore size and dispersity of the resulting mesoporous thin films. We apply a semi-preparative size exclusion chromatographic fractionation to a polydisperse poly(isobutylene)-block-poly(ethylene oxide) (PIB-b-PEO) BCP obtained from scaled-up synthesis. The isolation of BCP fractions with distinct molecular weight and narrowed dispersity allowed us to not only tune the characteristic pore size from 9.1±1.5 to 14.1±2.1 nm with the identical BCP source material, but also significantly reduce the pore size dispersity compared to the non-fractionated BCP. Our findings offer a route to obtain a library of monodisperse BCPs from a polydisperse feedstock and provide important insights on the direct relationship between macromolecular characteristics and the resulting structure-directed mesopores, in particular related to dispersity.


2020 ◽  
Author(s):  
Alberto Alvarez Fernandez ◽  
Barry Reid ◽  
Jugal Suthar ◽  
Swan Choy ◽  
Maximiliano Jesus Jara Fornerod ◽  
...  

Mesoporous inorganic thin films are promising materials architectures for a variety of applications, including sensing, catalysis, protective coatings, energy generation and storage. In many cases, precise control over a bicontinuous porous network on the 10-nm length scale is crucial for their operation. A particularly promising route for structure formation utilizes block copolymer (BCP) micelles in solution as sacrificial structure-directing agents for the co-assembly of inorganic precursors. This method offers pore size control via the molecular weight of the pore forming block and is compatible with broad materials library. On the other hand, the molecular weight dependence impedes continuous pore tuning and the intrinsic polymer dispersity presents challenges to the pore size homogeneity. To this end, we demonstrate how chromatographic fractionation of BCPs provides a powerful method to control the pore size and dispersity of the resulting mesoporous thin films. We apply a semi-preparative size exclusion chromatographic fractionation to a polydisperse poly(isobutylene)-block-poly(ethylene oxide) (PIB-b-PEO) BCP obtained from scaled-up synthesis. The isolation of BCP fractions with distinct molecular weight and narrowed dispersity allowed us to not only tune the characteristic pore size from 9.1±1.5 to 14.1±2.1 nm with the identical BCP source material, but also significantly reduce the pore size dispersity compared to the non-fractionated BCP. Our findings offer a route to obtain a library of monodisperse BCPs from a polydisperse feedstock and provide important insights on the direct relationship between macromolecular characteristics and the resulting structure-directed mesopores, in particular related to dispersity.


Author(s):  
RANDA ABDOU ◽  
MOHAMED DAWOUD

Objective: Endophytes are widely spread in the plant kingdom and represent a very promising source of biologically active natural products. The medicinal plant Bidens bipinnata Lin. (Asteraceae) which is known for its anti-inflammatory, antifungal and antitumor effects has been chosen for the investigation of its endophyte to search for bioactive metabolites. Methods: An endophytic Alternaria alternata species was isolated from the leaves of the plant B. bipinnata Lin. To investigate the metabolic profile of this endophytic fungus it was cultivated in several culture media as static and shaken culture. The antimicrobial and cytotoxic activities of the ethyl acetate extracts of the fungus were examined. Extracts exhibiting highest antimicrobial activities in agar diffusion assay and cytotoxicity against HeLa cancer cell line were subjected to activity-guided chromatographic fractionation for the identification of bioactive metabolites. A cytotoxic assay was performed on the isolated compounds against HeLa cancer cell lines as well as cytostatic activity tests against HUVEC and K-562 cell lines. Results: Chromatographic fractionation resulted in the isolation and identification of alternariol and tentoxin from the extract of the fungus cultivated in medium M5 while sterigmatocystin was isolated in addition to alternariol and tentoxin from the extract of the fungus grown in medium M25. Both alternariol and sterigmatocystin proved to be of moderate cytotoxicity and weak cytostatic activity with alternariol showing higher cytotoxic activity than sterigmatocystin. Highest cytotoxicity against HeLa cell lines was observed for tentoxin with a CC50 of 22.5 µg/ml. Conclusion: This study presents the isolation and identification of the bioactive metabolites alternariol, sterigmatocystin and tentoxin from the endophyte A. alternata in addition to the antifungal activity of the strain extract as well as the cytotoxic and cytostatic activities of the isolated metabolites against HeLa, HUVEC and K-562 cell lines, respectively.


2019 ◽  
Vol 53 (19) ◽  
pp. 11353-11363 ◽  
Author(s):  
Tobias Spranger ◽  
Dominik van Pinxteren ◽  
Thorsten Reemtsma ◽  
Oliver J. Lechtenfeld ◽  
Hartmut Herrmann

Sign in / Sign up

Export Citation Format

Share Document