substrate transport
Recently Published Documents


TOTAL DOCUMENTS

182
(FIVE YEARS 30)

H-INDEX

27
(FIVE YEARS 5)

2021 ◽  
Vol 22 (23) ◽  
pp. 12998
Author(s):  
Jin-Yan Zhou ◽  
Dong-Li Hao ◽  
Guang-Zhe Yang

Cytosolic pH homeostasis is a precondition for the normal growth and stress responses in plants, and H+ flux across the plasma membrane is essential for cytoplasmic pH control. Hence, this review focuses on seven types of proteins that possess direct H+ transport activity, namely, H+-ATPase, NHX, CHX, AMT, NRT, PHT, and KT/HAK/KUP, to summarize their plasma-membrane-located family members, the effect of corresponding gene knockout and/or overexpression on cytosolic pH, the H+ transport pathway, and their functional regulation by the extracellular/cytosolic pH. In general, H+-ATPases mediate H+ extrusion, whereas most members of other six proteins mediate H+ influx, thus contributing to cytosolic pH homeostasis by directly modulating H+ flux across the plasma membrane. The fact that some AMTs/NRTs mediate H+-coupled substrate influx, whereas other intra-family members facilitate H+-uncoupled substrate transport, demonstrates that not all plasma membrane transporters possess H+-coupled substrate transport mechanisms, and using the transport mechanism of a protein to represent the case of the entire family is not suitable. The transport activity of these proteins is regulated by extracellular and/or cytosolic pH, with different structural bases for H+ transfer among these seven types of proteins. Notably, intra-family members possess distinct pH regulatory characterization and underlying residues for H+ transfer. This review is anticipated to facilitate the understanding of the molecular basis for cytosolic pH homeostasis. Despite this progress, the strategy of their cooperation for cytosolic pH homeostasis needs further investigation.


Membranes ◽  
2021 ◽  
Vol 11 (10) ◽  
pp. 736
Author(s):  
Yeqing He ◽  
Guandi He ◽  
Tengbing He

Normal substrate transport and signal transmission are the premise to ensure the health of biological somatic cells. Therefore, a comprehensive understanding of the molecular mechanism of intercellular substrate transport is of great significance for clinical treatment. In order to better understand the membrane protein through its interaction with receptors, to help maintain a healthy cell and the molecular mechanisms of disease, in this paper, we seek to clarify, first of all, the recognition mechanism for different types of membrane protein receptors; pathogen invasion using the transport pathway involved in the membrane; and the latest specific target sites of various kinds of membrane transport carriers; to provide an explanation and summary of the system. Secondly, the downstream receptor proteins and specific substrates of different membrane transporters were classified systematically; the functional differences of different subclasses and their relationship with intracellular transport disorders were analyzed to further explore the potential relationship between cell transport disorders and diseases. Finally, the paper summarizes the use of membrane transporter-specific targets for drug design and development from the latest research results; it points out the transporter-related results in disease treatment; the application prospects and the direction for drug development and disease treatment providing a new train of thought; also for disease-specific targeted therapy, it provides a certain reference value.


eLife ◽  
2021 ◽  
Vol 10 ◽  
Author(s):  
Erich Stefan ◽  
Richard Obexer ◽  
Susanne Hofmann ◽  
Khanh Vu Huu ◽  
Yichao Huang ◽  
...  

ATP-binding cassette (ABC) transporters constitute the largest family of primary active transporters involved in a multitude of physiological processes and human diseases. Despite considerable efforts, it remains unclear how ABC transporters harness the chemical energy of ATP to drive substrate transport across cell membranes. Here, by random nonstandard peptide integrated discovery (RaPID), we leveraged combinatorial macrocyclic peptides that target a heterodimeric ABC transport complex and explore fundamental principles of the substrate translocation cycle. High-affinity peptidic macrocycles bind conformationally selective and display potent multimode inhibitory effects. The macrocycles block the transporter either before or after unidirectional substrate export along a single conformational switch induced by ATP binding. Our study reveals mechanistic principles of ATP binding, conformational switching, and energy transduction for substrate transport of ABC export systems. We highlight the potential of de novo macrocycles as effective inhibitors for membrane proteins implicated in multidrug resistance, providing avenues for the next-generation of pharmaceuticals.


2021 ◽  
Author(s):  
Lin Bai ◽  
Bhawik K. Jain ◽  
Qinglong You ◽  
H. Diessel Duan ◽  
Todd R. Graham ◽  
...  

ABSTRACTP4 ATPases are lipid flippases that are phylogenetically grouped into P4A, P4B and P4C clades. The P4A ATPases are heterodimers composed of a catalytic α-subunit and accessory β-subunit, and the structures of several heterodimeric flippases have been reported. The S. cerevisiae Neo1 and its orthologs represent the P4B ATPases, which function as monomeric flippases without a β-subunit. It has been unclear whether monomeric flippases retain the architecture and transport mechanism of the dimeric flippases. Here we report the first structure of a P4B ATPase, Neo1, in its E1-ATP, E2P-transition, and E2P states. The structure reveals a conserved architecture as well as highly similar functional intermediate states relative to dimeric flippases. Consistently, structure-guided mutagenesis of residues in the proposed substrate translocation path disrupted Neo1’s ability to establish membrane asymmetry. These observations indicate that evolutionarily distant P4 ATPases use a structurally conserved mechanism for substrate transport.


2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Hager Souabni ◽  
William Batista dos Santos ◽  
Quentin Cece ◽  
Laurent J. Catoire ◽  
Dhenesh Puvanendran ◽  
...  

AbstractTripartite efflux pumps built around ATP-binding cassette (ABC) transporters are membrane protein machineries that perform vectorial export of a large variety of drugs and virulence factors from Gram negative bacteria, using ATP-hydrolysis as energy source. Determining the number of ATP molecules consumed per transport cycle is essential to understanding the efficiency of substrate transport. Using a reconstituted pump in a membrane mimic environment, we show that MacAB-TolC from Escherichia coli couples substrate transport to ATP-hydrolysis with high efficiency. Contrary to the predictions of the currently prevailing “molecular bellows” model of MacB-operation, which assigns the power stroke to the ATP-binding by the nucleotide binding domains of the transporter, by utilizing a novel assay, we report clear synchronization of the substrate transfer with ATP-hydrolysis, suggesting that at least some of the power stroke for the substrate efflux is provided by ATP-hydrolysis. Our findings narrow down the window for energy consumption step that results in substrate transition into the TolC-channel, expanding the current understanding of the efflux cycle of the MacB-based tripartite assemblies. Based on that we propose a modified model of the MacB cycle within the context of tripartite complex assembly.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Sean Miletic ◽  
Dirk Fahrenkamp ◽  
Nikolaus Goessweiner-Mohr ◽  
Jiri Wald ◽  
Maurice Pantel ◽  
...  

AbstractMany bacterial pathogens rely on virulent type III secretion systems (T3SSs) or injectisomes to translocate effector proteins in order to establish infection. The central component of the injectisome is the needle complex which assembles a continuous conduit crossing the bacterial envelope and the host cell membrane to mediate effector protein translocation. However, the molecular principles underlying type III secretion remain elusive. Here, we report a structure of an active Salmonella enterica serovar Typhimurium needle complex engaged with the effector protein SptP in two functional states, revealing the complete 800Å-long secretion conduit and unraveling the critical role of the export apparatus (EA) subcomplex in type III secretion. Unfolded substrates enter the EA through a hydrophilic constriction formed by SpaQ proteins, which enables side chain-independent substrate transport. Above, a methionine gasket formed by SpaP proteins functions as a gate that dilates to accommodate substrates while preventing leaky pore formation. Following gate penetration, a moveable SpaR loop first folds up to then support substrate transport. Together, these findings establish the molecular basis for substrate translocation through T3SSs and improve our understanding of bacterial pathogenicity and motility.


RSC Advances ◽  
2021 ◽  
Vol 11 (57) ◽  
pp. 36329-36339
Author(s):  
Denggang Wang ◽  
Meiqi Chen ◽  
Xin Zeng ◽  
Wenjie Li ◽  
Shuli Liang ◽  
...  

Fermentation process was applied to relieve the substrate transport-limitation of P. pastoris whole-cell biocatalysts, which was much simpler, more energy-saving and greener than c traditional permeabilizing reagent and ultrasonication treatment.


Sign in / Sign up

Export Citation Format

Share Document