macrophage function
Recently Published Documents


TOTAL DOCUMENTS

859
(FIVE YEARS 140)

H-INDEX

64
(FIVE YEARS 9)

JCI Insight ◽  
2022 ◽  
Author(s):  
Helen I. Warheit-Niemi ◽  
Summer J. Edwards ◽  
Shuvasree SenGupta ◽  
Carole A. Parent ◽  
Xiaofeng Zhou ◽  
...  

Biomedicines ◽  
2021 ◽  
Vol 9 (12) ◽  
pp. 1939
Author(s):  
James M. Baker ◽  
Molly Hammond ◽  
Josiah Dungwa ◽  
Rajesh Shah ◽  
Angeles Montero-Fernandez ◽  
...  

Lung macrophage iron levels are increased in COPD patients. Lung macrophage iron levels are thought to be increased by cigarette smoke, but the role of red blood cells (RBCs) as a source of iron has not been investigated. We investigate RBCs as a potential source of alveolar iron in COPD, and determine the effect of RBC-derived iron on macrophage function. We used lung tissue sections to assess RBC coverage of the alveolar space, iron and ferritin levels in 11 non-smokers (NS), 15 smokers (S) and 32 COPD patients. Lung macrophages were isolated from lung resections (n = 68) and treated with hemin or ferric ammonium citrate (50, 100 or 200 μM). Lung macrophage phenotype marker gene expression was measured by qPCR. The phagocytosis of Non-typeable Haemophilus influenzae (NTHi) was measured by flow cytometry. Cytokine production in response to NTHi in iron-treated macrophages was measured by ELISA. Lung macrophage iron levels were significantly correlated with RBC coverage of the alveolar space (r = 0.31, p = 0.02). Furthermore, RBC coverage and lung macrophage iron were significantly increased in COPD patients and correlated with airflow obstruction. Hemin treatment downregulated CD36, CD163, HLA-DR, CD38, TLR4, CD14 and MARCO gene expression. Hemin-treated macrophages also impaired production of pro-inflammatory cytokines in response to NTHi exposure, and decreased phagocytosis of NTHi (200 μM: 35% decrease; p = 0.03). RBCs are a plausible source of pulmonary iron overload in COPD. RBC-derived iron dysregulates macrophage phenotype and function.


2021 ◽  
Vol 12 ◽  
Author(s):  
Xuewen Wang ◽  
Ziwei Liang ◽  
Hong Xiang ◽  
Yanqiu Li ◽  
Shuhua Chen ◽  
...  

Liver kinase B1 (LKB1) is known to shape the regulation of macrophage function by participating in multiple processes including cell metabolism, growth, and polarization. However, whether LKB1 also affects the functional plasticity of macrophages in atherosclerosis has not attracted much attention. Abnormal macrophage function is a pathophysiological hallmark of atherosclerosis, characterized by the formation of foam cells and the maintenance of vascular inflammation. Mounting evidence supports that LKB1 plays a vital role in the regulation of macrophage function in atherosclerosis, including affecting lipid metabolism reprogramming, inflammation, endoplasmic reticulum stress, and autophagy in macrophages. Thus, decreased expression of LKB1 in atherosclerosis aggravates vascular injury by inducing excessive lipid deposition in macrophages and the formation of foam cells. To systematically understand the role and potential mechanism of LKB1 in regulating macrophage functions in atherosclerosis, this review summarizes the relevant data in this regard, hoping to provide new ideas for the prevention and treatment of atherosclerosis.


Pathogens ◽  
2021 ◽  
Vol 10 (12) ◽  
pp. 1584
Author(s):  
Manjunath Bettadapura ◽  
Hayden Roys ◽  
Anne Bowlin ◽  
Gopinath Venugopal ◽  
Charity L. Washam ◽  
...  

Leishmanial skin lesions are characterized by inflammatory hypoxia alongside the activation of hypoxia-inducible factors, HIF-1α and HIF-2α, and subsequent expression of the HIF-α target VEGF-A during Leishmania major infection. However, the factors responsible for HIF-α activation are not known. We hypothesize that hypoxia and proinflammatory stimuli contribute to HIF-α activation during infection. RNA-Seq of leishmanial lesions revealed that transcripts associated with HIF-1α signaling were induced. To determine whether hypoxia contributes to HIF-α activation, we followed the fate of myeloid cells infiltrating from the blood and into hypoxic lesions. Recruited myeloid cells experienced hypoxia when they entered inflamed lesions, and the length of time in lesions increased their hypoxic signature. To determine whether proinflammatory stimuli in the inflamed tissue can also influence HIF-α activation, we subjected macrophages to various proinflammatory stimuli and measured VEGF-A. While parasites alone did not induce VEGF-A, and proinflammatory stimuli only modestly induced VEGF-A, HIF-α stabilization increased VEGF-A during infection. HIF-α stabilization did not impact parasite entry, growth, or killing. Conversely, the absence of ARNT/HIF-α signaling enhanced parasite internalization. Altogether, these findings suggest that HIF-α is active during infection, and while macrophage HIF-α activation promotes lymphatic remodeling through VEGF-A production, HIF-α activation does not impact parasite internalization or control.


2021 ◽  
pp. 2102594
Author(s):  
Marissa O'Callaghan ◽  
Feargal Helly ◽  
Elizabeth Tarling ◽  
Michael P. Keane ◽  
Cormac McCarthy

2021 ◽  
Author(s):  
Gabrielle L. Brumfield ◽  
Shelby M. Knoche ◽  
Alaina C. Larson ◽  
Brittany J. Poelaert ◽  
Benjamin T. Goetz ◽  
...  

Author(s):  
Ana B. Miltojević ◽  
Katarina V. Mitić ◽  
Nikola M. Stojanović ◽  
Pavle J. Randjelović ◽  
Niko S. Radulović

2021 ◽  
Vol 23 (1) ◽  
Author(s):  
Emily A. Jesser ◽  
Nicholas J. Brady ◽  
Danielle N. Huggins ◽  
Patrice M. Witschen ◽  
Christine H. O’Connor ◽  
...  

Abstract Background In breast cancer, complex interactions between tumor cells and cells within the surrounding stroma, such as macrophages, are critical for tumor growth, progression, and therapeutic response. Recent studies have highlighted the complex nature and heterogeneous populations of macrophages associated with both tumor-promoting and tumor-inhibiting phenotypes. Defining the pathways that drive macrophage function is important for understanding their complex phenotypes within the tumor microenvironment. Signal transducer and activator of transcription (STAT) transcription factors, such as STAT5, are key regulators of immune cell function. The studies described here investigate the functional contributions of STAT5 to tumor-associated macrophage function in breast cancer. Methods Initial studies were performed using a panel of human breast cancer and mouse mammary tumor cell lines to determine the ability of tumor cell-derived factors to induce STAT5 activation in macrophages. Further studies used these models to identify soluble factors that activate STAT5 in macrophages. To delineate STAT5-specific contributions to macrophage function, a conditional model of myeloid STAT5 deletion was used for in vitro, RNA-sequencing, and in vivo studies. The effects of STAT5 deletion in macrophages on tumor cell migration and metastasis were evaluated using in vitro co-culture migration assays and an in vivo tumor cell-macrophage co-injection model. Results We demonstrate here that STAT5 is robustly activated in macrophages by tumor cell-derived factors and that GM-CSF is a key cytokine stimulating this pathway. The analysis of RNA-seq studies reveals that STAT5 promotes expression of immune stimulatory genes in macrophages and that loss of STAT5 in macrophages results in increased expression of tissue remodeling factors. Finally, we demonstrate that loss of STAT5 in macrophages promotes tumor cell migration in vitro and mammary tumor metastasis in vivo. Conclusions Breast cancer cells produce soluble factors, such as GM-CSF, that activate the STAT5 pathway in macrophages and drive expression of inflammatory factors. STAT5 deletion in myeloid cells enhances metastasis, suggesting that STAT5 activation in tumor-associated macrophages protects against tumor progression. Understanding mechanisms that drive macrophage function in the tumor microenvironment will ultimately lead to new approaches that suppress tumor-promoting functions while enhancing their anti-tumor functions.


Sign in / Sign up

Export Citation Format

Share Document