biophysical interactions
Recently Published Documents


TOTAL DOCUMENTS

81
(FIVE YEARS 26)

H-INDEX

19
(FIVE YEARS 3)

2021 ◽  
Vol 2021 ◽  
pp. 1-13
Author(s):  
Fatemeh Sanie-Jahromi ◽  
Ali Azizi ◽  
Sahar Shariat ◽  
Mohammadkarim Johari

Tissue engineering is biomedical engineering that uses suitable biochemical and physicochemical factors to assemble functional constructs that restore or improve damaged tissues. Recently, cell therapies as a subset of tissue engineering have been very promising in the treatment of ocular diseases. One of the most important biophysical factors to make this happen is noninvasive electrical stimulation (ES) to target ocular cells that may preserve vision in multiple retinal and optic nerve diseases. The science of cellular and biophysical interactions is very exciting in regenerative medicine now. Although the exact effect of ES on cells is unknown, multiple mechanisms are considered to underlie the effects of ES, including increased production of neurotrophic agents, improved cell migration, and inhibition of proinflammatory cytokines and cellular apoptosis. In this review, we highlighted the effects of ES on ocular cells, especially on the corneal, retinal, and optic nerve cells. Initially, we summarized the current literature on the in vitro and in vivo effects of ES on ocular cells and then we provided the clinical studies describing the effect of ES on ocular complications. For each area, we used some of the most impactful articles to show the important concepts and results that advanced the state of these interactions. We conclude with reflections on emerging new areas and perspectives for future development in this field.


Author(s):  
Dimitra Vasilaki ◽  
Athina Bakopoulou ◽  
Alexandros Tsouknidas ◽  
Elaine Johnstone ◽  
Konstantinos Michalakis

AbstractDuring metastasis, tumor cells need to adapt to their dynamic microenvironment and modify their mechanical properties in response to both chemical and mechanical stimulation. Physical interactions occur between cancer cells and the surrounding matrix including cell movements and cell shape alterations through the process of mechanotransduction. The latter describes the translation of external mechanical cues into intracellular biochemical signaling. Reorganization of both the cytoskeleton and the extracellular matrix (ECM) plays a critical role in these spreading steps. Migrating tumor cells show increased motility in order to cross the tumor microenvironment, migrate through ECM and reach the bloodstream to the metastatic site. There are specific factors affecting these processes, as well as the survival of circulating tumor cells (CTC) in the blood flow until they finally invade the secondary tissue to form metastasis. This review aims to study the mechanisms of metastasis from a biomechanical perspective and investigate cell migration, with a focus on the alterations in the cytoskeleton through this journey and the effect of biologic fluids on metastasis. Understanding of the biophysical mechanisms that promote tumor metastasis may contribute successful therapeutic approaches in the fight against cancer.


2021 ◽  
pp. 1-23
Author(s):  
Roger Gaudreault ◽  
Vincent Hervé ◽  
Theo G.M. van de Ven ◽  
Normand Mousseau ◽  
Charles Ramassamy

Alzheimer’s disease (AD) is the most common age-related neurodegenerative disorder, responsible for nearly two-thirds of all dementia cases. In this review, we report the potential AD treatment strategies focusing on natural polyphenol molecules (green chemistry) and more specifically on the inhibition of polyphenol-induced amyloid aggregation/disaggregation pathways: in bulk and on biosurfaces. We discuss how these pathways can potentially alter the structure at the early stages of AD, hence delaying the aggregation of amyloid-β (Aβ) and tau. We also discuss multidisciplinary approaches, combining experimental and modelling methods, that can better characterize the biochemical and biophysical interactions between proteins and phenolic ligands. In addition to the surface-induced aggregation, which can occur on surfaces where protein can interact with other proteins and polyphenols, we suggest a new concept referred as “confinement stability”. Here, on the contrary, the adsorption of Aβ and tau on biosurfaces other than Aβ- and tau-fibrils, e.g., red blood cells, can lead to confinement stability that minimizes the aggregation of Aβ and tau. Overall, these mechanisms may participate directly or indirectly in mitigating neurodegenerative diseases, by preventing protein self-association, slowing down the aggregation processes, and delaying the progression of AD.


2021 ◽  
Vol 39 (2) ◽  
pp. 023201
Author(s):  
Valentina Wieser ◽  
Pierluigi Bilotto ◽  
Ulrich Ramach ◽  
Hui Yuan ◽  
Kai Schwenzfeier ◽  
...  

2021 ◽  
Vol 7 ◽  
Author(s):  
Aditya R. Nayak ◽  
Ed Malkiel ◽  
Malcolm N. McFarland ◽  
Michael S. Twardowski ◽  
James M. Sullivan

The characterization of particle and plankton populations, as well as microscale biophysical interactions, is critical to several important research areas in oceanography and limnology. A growing number of aquatic researchers are turning to holography as a tool of choice to quantify particle fields in diverse environments, including but not limited to, studies on particle orientation, thin layers, phytoplankton blooms, and zooplankton distributions and behavior. Holography provides a non-intrusive, free-stream approach to imaging and characterizing aquatic particles, organisms, and behavior in situ at high resolution through a 3-D sampling volume. Compared to other imaging techniques, e.g., flow cytometry, much larger volumes of water can be processed over the same duration, resolving particle sizes ranging from a few microns to a few centimeters. Modern holographic imaging systems are compact enough to be deployed through various modes, including profiling/towed platforms, buoys, gliders, long-term observatories, or benthic landers. Limitations of the technique include the data-intensive hologram acquisition process, computationally expensive image reconstruction, and coherent noise associated with the holograms that can make post-processing challenging. However, continued processing refinements, rapid advancements in computing power, and development of powerful machine learning algorithms for particle/organism classification are paving the way for holography to be used ubiquitously across different disciplines in the aquatic sciences. This review aims to provide a comprehensive overview of holography in the context of aquatic studies, including historical developments, prior research applications, as well as advantages and limitations of the technique. Ongoing technological developments that can facilitate larger employment of this technique toward in situ measurements in the future, as well as potential applications in emerging research areas in the aquatic sciences are also discussed.


Author(s):  
Eleanor B. Mackay ◽  
Ian D. Jones ◽  
Emma Gray

Sign in / Sign up

Export Citation Format

Share Document