atmospheric energy
Recently Published Documents


TOTAL DOCUMENTS

156
(FIVE YEARS 28)

H-INDEX

30
(FIVE YEARS 1)

MAUSAM ◽  
2021 ◽  
Vol 65 (1) ◽  
pp. 57-66
Author(s):  
FEIGE FEIGE ◽  
ZAHEER AHMADBABAR ◽  
SHENG LIGUO ◽  
XIEFEIZHI FEIZHI ◽  
YUNCHEN YUNCHEN ◽  
...  

Extreme weather events over Asia particularly in Pakistan are becoming more frequent in the present decade or so. This is contributing to the ever increasing human suffering of the region. In this study the whole energy parameter E from atmospheric energetic theory is derived. The characteristics of atmospheric energy conversion during the heavy rainfall in Pakistan for the period 27-29 July, 2010 are also discussed. The results show that due to the impact of the atmospheric circulation and terrain conditions, the kinetic energy is converted into potential energy, in the form of standing wave, during heavy rainfall development period. The conversion between kinetic and potential energy is significant in heavy rainfall spell. High energy value corresponds to the heavy rainfall region.


Climate ◽  
2021 ◽  
Vol 9 (12) ◽  
pp. 180
Author(s):  
Silas Michaelides

The aim of this study is to investigate whether different Representative Concentration Pathways (RCPs), as they are determined in the Fifth Assessment Report (AR5) of the Intergovernmental Panel on Climate Change (IPCC), lead to different regimes in the energetics components of the Lorenz energy cycle. The four energy forms on which this investigation is based are the zonal and eddy components of the available potential and kinetic energies. The corresponding transformations between these forms of energy are also studied. RCPs are time-dependent, consistent scenarios of concentrations of radiatively active gases and particles. In the present study, four RCPs are explored, namely, rcp26, rcp45, rcp60, rcp85; these represent projections (for the future period 2006–2100) that result in radiative forcing of approximately 2.6, 4.5, 6.0 and 8.5 Wm−2 at year 2100, respectively, relative to pre-industrial conditions. The results are presented in terms of time projections of the energetics components from 2020 to 2100 and show that the different RCPs yield diverse energetics regimes, consequently impacting the Lorenz energy cycle. In this respect, projections under different RCPs of the Lorenz energy cycle are presented.


2021 ◽  
Author(s):  
Bernd Heinold ◽  
Holger Baars ◽  
Boris Barja ◽  
Matthew Christensen ◽  
Anne Kubin ◽  
...  

Abstract. More than 1 Tg smoke aerosol was emitted into the atmosphere by the exceptional 2019–2020 Southeast Australian wildfires. Triggered by the extreme fire heat, several deep pyroconvective events carried the smoke directly into the stratosphere. Once there, smoke aerosol remained airborne considerably longer than in lower atmospheric layers. The thick plumes traveled eastward thereby being distributed across the high and mid-latitude Southern Hemisphere enhancing the atmospheric opacity. Due to the increased atmospheric lifetime of the smoke plume its radiative effect increased compared to smoke that remains lower altitudes. Global models describing aerosol-climate impacts show significant uncertainties regarding the emission height of aerosols from intense wildfires. Here, we demonstrate by combination of aerosol-climate modeling and lidar observations the importance of the representation of those high-altitude fire smoke layers for estimating the atmospheric energy budget. In this observation-based approach, the Australian wildfire emissions by pyroconvection are explicitly prescribed to the lower stratosphere in different scenarios. The 2019–2020 Australian fires caused a significant top-of-atmosphere hemispheric instantaneous direct radiative forcing signal that reached a magnitude comparable to the radiative forcing induced by anthropogenic absorbing aerosol. Up to +0.50 W m−2 instantaneous direct radiative forcing was modeled at top of the atmosphere, averaged for the Southern Hemisphere for January to March 2020 under all-sky conditions. While at the surface, an instantaneous solar radiative forcing of up to −0.81 W m−2 was found for clear-sky conditions, depending on the model configuration. Since extreme wildfires are expected to occur more frequently in the rapidly changing climate, our findings suggest that deep wildfire plumes must be adequately considered in climate projections in order to obtain reasonable estimates of atmospheric energy budget changes.


2021 ◽  
Author(s):  
Timothy Merlis ◽  
Nicole Feldl ◽  
Rodrigo Caballero

The midlatitude poleward atmospheric energy transport increases in radiatively forced simulations of warmed climates across a range of models from comprehensive coupled general circulation models (GCMs) to idealized aquaplanet moist GCMs to diffusive moist energy balance models. These increases have been rationalized from two perspectives. The energetic (or radiative) perspective takes the atmospheric energy budget and decomposes energy flux changes (radiative forcing, feedbacks, or surface fluxes) to determine the energy transport changes required by the budget. The diffusive perspective takes the net effect of atmospheric macroturbulence to be a diffusive energy transport down-gradient, so a change in transport can arise from changes in mean energy gradients or turbulent diffusivity. Here, we compare these perspectives in idealized moist, gray-radiation GCM simulations over a wide range of climate states. The energetic perspective has a dominant role for radiative forcing in this GCM, with cancellation between the components of the temperature feedback that can account for the GCM's non-monotonic energy transport changes. Comprehensive CMIP5 GCM simulations have similarities in the northern hemisphere to the idealized GCM, though a comprehensive GCM over several CO2 doublings has a distinctly different feedback structure evolution. The diffusive perspective requires a non-constant diffusivity to account for the idealized GCM-simulated changes, with important roles for the eddy velocity, dry static stability, and horizontal energy gradients. Beyond diagnostic analysis, GCM-independent a priori theories for components of the temperature feedback are presented that account for changes without knowledge of a perturbed climate state, suggesting that this is the more parsimonious perspective.


2021 ◽  
Author(s):  
Zixuan Han ◽  
Qiong Zhang ◽  
Qiang Li ◽  
Ran Feng ◽  
Alan M. Haywood ◽  
...  

Abstract. The mid-Pliocene (~ 3 million years ago) is one of the most recent warm periods with high CO2 concentrations in the atmosphere and resulting high temperatures and is often cited as an analog for near-term future climate change. Here, we apply a moisture budget analysis to investigate the response of the large-scale hydrological cycle at low latitudes within a 13-model ensemble from the Pliocene Model Intercomparison Project Phase 2 (PlioMIP2). The results show that increased atmospheric moisture content within the mid-Pliocene ensemble (the thermodynamic effect) results in wetter conditions over the deep tropics, i.e., the Pacific intertropical convergence zone (ITCZ) and the Maritime Continent, and drier conditions over the subtropics. The thermodynamic effect is to some extent offset by a dynamic effect involving a northward shift of the Hadley circulation that dries the deep tropics and moistens the subtropics in the Northern Hemisphere (i.e., the subtropical Pacific). From the perspective of Earth’s energy budget, the enhanced southward cross-equatorial atmospheric transport (0.22 PW), induced by the hemispheric asymmetries of the atmospheric energy, favors an approximately 1° northward shift of the ITCZ. The shift of the ITCZ reorganizes atmospheric circulation, favoring a northward shift of the Hadley circulation. In addition, the Walker circulation consistently shifts westward within PlioMIP2 models, leading to wetter conditions over the northern Indian Ocean. The PlioMIP2 ensemble highlights that an imbalance of interhemispheric atmospheric energy during the mid-Pliocene could have led to changes in the dynamic effect, offsetting the thermodynamic effect and hence altering mid-Pliocene hydroclimate cycling.


2021 ◽  
pp. 1-63
Author(s):  
Marysa M. Laguë ◽  
Abigail L. S. Swann ◽  
William R. Boos

AbstractChanges in land surface albedo and land surface evaporation modulate the atmospheric energy budget by changing temperatures, water vapor, clouds, snow and ice cover, and the partitioning of surface energy fluxes. Here idealized perturbations to land surface properties are imposed in a global model to understand how such forcings drive shifts in zonal mean atmospheric energy transport and zonal mean tropical precipitation. For a uniform decrease in global land albedo, the albedo forcing and a positive water vapor feedback contribute roughly equally to increased energy absorption at the top of the atmosphere (TOA), while radiative changes due to the temperature and cloud cover response provide a negative feedback and energy loss at TOA. Decreasing land albedo causes a northwards shift in the zonal mean intertropical convergence zone (ITCZ). The combined effects on ITCZ location of all atmospheric feedbacks roughly cancel for the albedo forcing; the total ITCZ shift is comparable to that predicted for the albedo forcing alone. For an imposed increase in evaporative resistance that reduces land evaporation, low cloud cover decreases in the northern mid-latitudes and more energy is absorbed at TOA there; longwave loss due to warming provides a negative feedback on the TOA energy balance and ITCZ shift. Imposed changes in land albedo and evaporative resistance modulate fundamentally different aspects of the surface energy budget. However, the pattern of TOA radiation changes due to the water vapor and air temperature responses are highly correlated for these two forcings because both forcings lead to near-surface warming.


2021 ◽  
Vol 21 (8) ◽  
pp. 5865-5881
Author(s):  
Joonas Merikanto ◽  
Kalle Nordling ◽  
Petri Räisänen ◽  
Jouni Räisänen ◽  
Declan O'Donnell ◽  
...  

Abstract. South and East Asian anthropogenic aerosols mostly reside in an air mass extending from the Indian Ocean to the North Pacific. Yet the surface temperature effects of Asian aerosols spread across the whole globe. Here, we remove Asian anthropogenic aerosols from two independent climate models (ECHAM6.1 and NorESM1) using the same representation of aerosols via MACv2-SP (a simple plume implementation of the second version of the Max Planck Institute Aerosol Climatology). We then robustly decompose the global distribution of surface temperature responses into contributions from atmospheric energy flux changes. We find that the horizontal atmospheric energy transport strongly moderates the surface temperature response over the regions where Asian aerosols reside. Atmospheric energy transport and changes in clear-sky longwave radiation redistribute the temperature effects efficiently across the Northern Hemisphere and to a lesser extent also over the Southern Hemisphere. The model-mean global surface temperature response to Asian anthropogenic aerosol removal is 0.26±0.04 ∘C (0.22±0.03 for ECHAM6.1 and 0.30±0.03 ∘C for NorESM1) of warming. Model-to-model differences in global surface temperature response mainly arise from differences in longwave cloud (0.01±0.01 for ECHAM6.1 and 0.05±0.01 ∘C for NorESM1) and shortwave cloud (0.03±0.03 for ECHAM6.1 and 0.07±0.02 ∘C for NorESM1) responses. The differences in cloud responses between the models also dominate the differences in regional temperature responses. In both models, the northern-hemispheric surface warming amplifies towards the Arctic, where the total temperature response is highly seasonal and weakest during the Arctic summer. We estimate that under a strong Asian aerosol mitigation policy tied with strong climate mitigation (Shared Socioeconomic Pathway 1-1.9) the Asian aerosol reductions can add around 8 years' worth of current-day global warming during the next few decades.


2021 ◽  
Vol 126 (4) ◽  
Author(s):  
C. Charalambous ◽  
A. E. Stott ◽  
W. T. Pike ◽  
J. B. McClean ◽  
T. Warren ◽  
...  

2021 ◽  
Author(s):  
Olivia Linke ◽  
Johannes Quaas

<p>The strong warming trend in the Arctic is mostly confined at the surface, and particularly evident during the cold season. The lapse rate feedback (LRF) stands out as one of the dominant causes of the Arctic amplification (besides the surface albedo feedback) given its differing response between high and lower latitudes. The LRF is the deviation from the uniform temperature change throughout the troposphere, and can thereby be quantified as the difference of tropospheric warming and surface warming. In the Arctic, it enforces a positive radiative feedback as the bottom-heavy warming is increasingly muted at higher altitudes, which has been suggested to relate to the lack of vertical mixing. In fact, climate model studies have recently identified more negative lapse rates for models with stronger inversions over large parts of the Arctic ocean, and snow-free land during winter.</p><p>Here we quantify individual components of the atmospheric energy balance to better understand the determination of the temperature lapse rate in the Arctic, which does not only interact with the surface albedo feedback, but also changes in atmospheric transport. A decomposition of the atmospheric energy budget is derived from the 6th phase of the Coupled Model Intercomparison Project (CMIP6), and concerns the radiation budgets, the transport divergence of heat and moisture, and the surface turbulent heat fluxes. Alterations of the budget components are obtained through pairs of model scenarios to simulate the impact of increasing atmospheric CO2 levels in an idealized setup.</p><p>The most notable features are the strongly opposing winter changes of the surface heat fluxes over regions of sea ice retreat and open Arctic ocean, and the interplay with the compensating energy transport divergence which can be linked to the near-surface air moist static energy in an energetic-diffusive perspective. We further aim to relate the changes of individual energetics to the temperature lapse rate in the Arctic to better understand and quantify the factors contributing to its evolution.</p>


2021 ◽  
pp. 1-69
Author(s):  
Johannes Mayer ◽  
Michael Mayer ◽  
Leopold Haimberger

AbstractThis study uses advanced numerical and diagnostic methods are used to evaluate the atmospheric energy budget with the fifth generation European Re-Analysis (ERA5) in combination with observed and reconstructed top-of-the-atmosphere (TOA) energy fluxes for the period 1985–2018. We assess the meridional as well as ocean-to-land energy transport and perform internal consistency checks using mass-balanced data. Furthermore, the moisture and mass budgets in ERA5 are examined and compared with previous budget evaluations using ERA-Interim as well as observation-based estimates. Results show that peak annual mean meridional atmospheric energy transports in ERA5 (4.58±0.07 PW in the northern hemisphere) are weaker compared to ERA-Interim (4.74±0.09 PW), where the higher spatial and temporal resolution of ERA5 can be excluded as possible reason. The ocean-to-land energy transport in ERA5 is reliable at least from 2000 onwards (∼2.5 PW) such that the imbalance between net TOA fluxes and lateral energy fluxes over land are on the order of ∼1W m-2. Spin-up/-down effects as revealed from inconsistencies between analyses and forecasts are generally smaller and temporally less variable in ERA5 compared to ERA-Interim. Evaluation of the moisture budget shows that the ocean-to-land moisture transport and parameterized freshwater fluxes agree well in ERA5, while there are large inconsistencies in ERA-Interim. Overall, the quality of the budgets derived from ERA5 is demonstrably better than estimates from ERA-Interim. Still some particularly sensitive budget quantities (e.g., precipitation, evaporation, and ocean-land energy transport) show apparent inhomogeneities, especially in the late 1990s, which warrant further investigation and need to be considered in studies of interannual variability and trends.


Sign in / Sign up

Export Citation Format

Share Document