behavioral types
Recently Published Documents


TOTAL DOCUMENTS

81
(FIVE YEARS 22)

H-INDEX

11
(FIVE YEARS 3)

Appetite ◽  
2021 ◽  
Vol 166 ◽  
pp. 105440
Author(s):  
Stephanie P. Goldstein ◽  
J. Graham Thomas ◽  
Leslie A. Brick ◽  
Fengqing Zhang ◽  
Evan M. Forman

Diagnostics ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 1973
Author(s):  
Silas Dech ◽  
Frank N. Bittmann ◽  
Laura V. Schaefer

The regulation of oxygen and blood supply during isometric muscle actions is still unclear. Recently, two behavioral types of oxygen saturation (SvO2) and relative hemoglobin amount (rHb) in venous microvessels were described during a fatiguing holding isometric muscle action (HIMA) (type I: nearly parallel behavior of SvO2 and rHb; type II: partly inverse behavior). The study aimed to ascertain an explanation of these two regulative behaviors. Twelve subjects performed one fatiguing HIMA trial with each arm by weight holding at 60% of the maximal voluntary isometric contraction (MVIC) in a 90° elbow flexion. Six subjects additionally executed one fatiguing PIMA trial by pulling on an immovable resistance with 60% of the MVIC with each side and same position. Both regulative types mentioned were found during HIMA (I: n = 7, II: n = 17) and PIMA (I: n = 3, II: n = 9). During the fatiguing measurements, rHb decreased initially and started to increase in type II at an average SvO2-level of 58.75 ± 2.14%. In type I, SvO2 never reached that specific value during loading. This might indicate the existence of a threshold around 59% which seems to trigger the increase in rHb and could explain the two behavioral types. An approach is discussed to meet the apparent incompatibility of an increased capillary blood filling (rHb) despite high intramuscular pressures which were found by other research groups during isometric muscle actions.


2021 ◽  
Vol Volume 17, Issue 4 ◽  
Author(s):  
Claudio Antares Mezzina ◽  
Jorge A. Pérez

In programming models with a reversible semantics, computational steps can be undone. This paper addresses the integration of reversible semantics into process languages for communication-centric systems equipped with behavioral types. In prior work, we introduced a monitors-as-memories approach to seamlessly integrate reversible semantics into a process model in which concurrency is governed by session types (a class of behavioral types), covering binary (two-party) protocols with synchronous communication. The applicability and expressiveness of the binary setting, however, is limited. Here we extend our approach, and use it to define reversible semantics for an expressive process model that accounts for multiparty (n-party) protocols, asynchronous communication, decoupled rollbacks, and abstraction passing. As main result, we prove that our reversible semantics for multiparty protocols is causally-consistent. A key technical ingredient in our developments is an alternative reversible semantics with atomic rollbacks, which is conceptually simple and is shown to characterize decoupled rollbacks.


2021 ◽  
Author(s):  
Jenn M Coughlan ◽  
Andrius Dagilis ◽  
Antonio Serrato-Capuchina ◽  
Hope Elias ◽  
David Peede ◽  
...  

Understanding the factors that produce and maintain genetic variation is a central goal of evolutionary biology. Despite a century of genetic analysis, the evolutionary history underlying patterns of exceptional genetic and phenotypic variation in the model organism Drosophila melanogaster remains poorly understood. In particular, how genetic and phenotypic variation is partitioned across global D. melanogaster populations, and specifically in its putative ancestral range in Subtropical Africa, remains unresolved. Here, we integrate genomic and behavioral analyses to assess patterns of population genetic structure, admixture, mate preference, and genetic incompatibility throughout the range of this model organism. Our analysis includes 174 new accessions from novel and under-sampled regions within Subtropical Africa. We find that while almost all Out of Africa genomes correspond to a single genetic ancestry, different geographic regions within Africa contain multiple distinct ancestries, including the presence of substantial cryptic diversity within Subtropical Africa. We find evidence for significant admixture- and variation in admixture rates-between geographic regions within Africa, as well as between African and non-African lineages. By combining behavioral analysis with population genomics, we demonstrate that female mate choice is highly polymorphic, behavioral types are not monophyletic, and that genomic differences between behavioral types correspond to many regions across the genome. These include regions associated with neurological development, behavior, olfactory perception, and learning. Finally, we discovered that many individual pairs of putative incompatibility loci likely evolved during or after the expansion of D. melanogaster out of Africa. This work contributes to our understanding of the evolutionary history of a key model system, and provides insight into the distribution of reproductive barriers that are polymorphic within species.


2021 ◽  
pp. 1-14
Author(s):  
Katharina Koch ◽  
Lorena R. R. Gianotti ◽  
Jan Hausfeld ◽  
Mirjam Studler ◽  
Daria Knoch

Abstract There are many situations where resources are distributed between two parties and where the deciding party has information about the initial distribution and can change its outcome, for example, the allocation of budget for funds or bonuses, where the deciding party might have self-interested motives. Although the neural underpinnings of distributional preferences of resources have been extensively studied, it remains unclear if there are different types of distributional preferences and if these types underlie different disposing neural signatures. We used source-localized resting EEG in combination with a data-driven clustering approach to participants' behavior in a distribution game in order to disentangle the neural sources of the different types of distributional preferences. Our findings revealed four behavioral types: Maximizing types always changed initial distributions to maximize their personal outcomes, and compliant types always left initial distributions unchanged. Disadvantage-averse types only changed initial distributions if they received less than the other party did, and equalizing types primarily changed initial distributions to fair distributions. These behavioral types differed regarding neural baseline activation in the right inferior frontal gyrus. Maximizing and compliant types showed the highest baseline activation, followed by disadvantage-averse types and equalizing types. Furthermore, maximizing types showed significantly higher baseline activation in the left OFC compared to compliant types. Taken together, our findings show that different types of distributional preferences are characterized by distinct neural signatures, which further imply differences in underlying psychological processes in decision-making.


2021 ◽  
Vol 8 (1) ◽  
pp. 35-51
Author(s):  
Cassandra L. Volker ◽  
Denise L. Herzing

Some species exhibit behavioral plasticity by altering their aggressive behavior based on their opponent. Atlantic spotted dolphins (Stenella frontalis) and bottlenose dolphins (Tursiops truncatus) are two sympatric species resident to the northern Bahamas. We examined whether groups of adult male spotted dolphins demonstrated behavioral plasticity during two different types of aggressive interactions. We described and compared the types of aggressive behaviors used during intraspecific aggression and interspecific aggression with bottlenose dolphins. Between the years 1991-2004, twenty-two aggressive encounters (11 intraspecific (spotted only), 11 interspecific (spotted vs. bottlenose)) were behaviorally analyzed. Twenty-three specific aggressive Behavioral Events, further grouped into three Behavioral Types, were examined throughout these encounters. Similarities and differences in the use of the Behavioral Types occurred during intra- and interspecific aggression. Groups of male Atlantic spotted dolphins altered their behavior during aggressive encounters with male bottlenose dolphins. Spotted dolphins increased their use of the Pursuit Behavioral Type and did not use the Display Behavioral Type significantly more than the Contact Behavioral Type during interspecific aggression. The increased use of a more overt and energy intensive Behavioral Type, Pursuit, suggests that Atlantic spotted dolphins altered their behavior during aggressive encounters with bottlenose dolphins to compensate during fights with a larger species and/or to effectively communicate with a different species.


2021 ◽  
Vol 8 ◽  
Author(s):  
Juliane Lukas ◽  
Gregor Kalinkat ◽  
Friedrich Wilhelm Miesen ◽  
Tim Landgraf ◽  
Jens Krause ◽  
...  

Understanding the linkage between behavioral types and dispersal tendency has become a pressing issue in light of global change and biological invasions. Here, we explore whether dispersing individuals exhibit behavioral types that differ from those remaining in the source population. We investigated a feral population of guppies (Poecilia reticulata) that undergoes a yearly range shift cycle. Guppies are among the most widespread invasive species in the world, but in temperate regions these tropical fish can only survive in winter-warm freshwaters. Established in a thermally-altered stream in Germany, guppies are confined to a warm-water influx in winter, but can spread to peripheral parts as these become thermally accessible. We sampled fish from the source population and a winter-abandoned site in March, June and August. Fish were tested for boldness, sociability and activity involving open-field tests including interactions with a robotic social partner. Guppies differed consistently among each other in all three traits within each sample. Average trait expression in the source population differed across seasons, however, we could not detect differences between source and downstream population. Instead, all populations exhibited a remarkably stable behavioral syndrome between boldness and activity despite strong seasonal changes in water temperature and associated environmental factors. We conclude that random drift (opposed to personality-biased dispersal) is a more likely dispersal mode for guppies, at least in the investigated stream. In the face of fluctuating environments, guppies seem to be extremely effective in keeping behavioral expressions constant, which could help explain their successful invasion and adaptation to new and disturbed habitats.


Sign in / Sign up

Export Citation Format

Share Document