collagen type 1
Recently Published Documents


TOTAL DOCUMENTS

144
(FIVE YEARS 59)

H-INDEX

23
(FIVE YEARS 4)

2022 ◽  
pp. 030098582110674
Author(s):  
Wilhelmina Bergmann ◽  
Chris van de Lest ◽  
Saskia Plomp ◽  
Johannes C. M. Vernooij ◽  
Inge D. Wijnberg ◽  
...  

Gross morphology of healthy and degenerated intervertebral discs (IVDs) is largely similar in horses as in dogs and humans. For further comparison, the biochemical composition and the histological and biochemical changes with age and degeneration were analyzed in 41 warmblood horses. From 33 horses, 139 discs and 2 fetal vertebral columns were evaluated and scored histologically. From 13 horses, 73 IVDs were assessed for hydration, DNA, glycosaminoglycans, total collagen, hydroxyl-lysyl-pyridinoline, hydroxylysine, and advanced glycation end-product (AGE) content. From 7 horses, 20 discs were assessed for aggrecan, fibronectin, and collagen type 1 and 2 content. Histologically, tearing of the nucleus pulposus (NP) and cervical annulus fibrosus (AF), and total histological score (tearing and vascular proliferation of the AF, and chondroid metaplasia, chondrocyte-like cell proliferation, presence of notochordal cells, matrix staining, and tearing of the NP) correlated with gross degeneration. Notochordal cells were not seen in IVDs of horses. Age and gross degeneration were positively correlated with AGEs and a fibrotic phenotype, explaining gross degenerative changes. In contrast to dogs and humans, there was no consistent difference in glycosaminoglycan content and hydration between AF and NP, nor decrease of these variables with age or degeneration. Hydroxylysine decrease and collagen 1 and AGEs increase were most prominent in the NP, suggesting degeneration started in the AP. In caudal cervical NPs, AGE deposition was significantly increased in grossly normal IVDs and total collagen significantly increased with age, suggesting increased biomechanical stress and likelihood for spinal disease in this part of the vertebral column.


2021 ◽  
Vol 14 (12) ◽  
pp. 1281
Author(s):  
Laura Costa Pinho ◽  
Marta M. Alves ◽  
Bruno Colaço ◽  
Maria Helena Fernandes ◽  
Catarina Santos

In this work, magnesium hydroxide NPs were synthesized using water (Mg(OH)2 NPs) or a rose hip (RH) extract (Mg(OH)2RH NPs) and tested for the bone cells’ effects in co-cultured osteoblastic and osteoclastic cells, using a Transwell® insert system, allowing reciprocal cell paracrine interactions. Behavior of each cell population was characterized for typical phenotype markers, at days 1 and 6. Cell cultures treated with osteogenic/osteoclastogenic inducers were used as positive control of cell differentiation. The NPs presented a round shape morphology with an average diameter ~90 nm (Mg(OH)2 NPs) and below 10 nm (Mg(OH)2RH NPs. Both NPs induced osteoblastic and osteoclastic behavior similarly to that observed in induced osteoblastic and osteoclastic cultures (positive controls). Differences between the two types of particles were evident at the gene expression level. Compared to Mg(OH)2 NPs, the green-synthesized NPs greatly increased the expression of osteoblastic genes coding for the early markers ALP and collagen type 1 and the later transcription factor osterix, while decreasing the expression of osteoclastogenic genes, namely the essential transcription factor NFATC1, TRAP and the genes coding for the functional markers CA2 and CTSK. Overall, a positive added effect could be hypothesized for Mg(OH)2RH NPs with potential usefulness to promote bone formation in regenerative applications.


Author(s):  
Gnyana Ranjan Parida ◽  
Gurudutta Pattnaik ◽  
Amulyaratna Behera

Diseases are there, some are curable but certain diseases are life threatening. The dreadfulness of liver fibrosis created much attention in 21st century among pharmaceutical researchers. Usually liver fibrosis is asymptomatic and patients with advanced cirrhosis symptoms will have limited scope for reversibility. Recognition of asymptomatic individuals by considering them as critical is the fundamental step to control the liver-related morbidity and mortality. By reviewing the previous mortality analysis around the globe it is reported that liver fibrosis is the second leading cause of mortality in US, fifth most common cause of death in Germany, UK as well as tenth most frequent cause of fatality in India and around 10 lakh patients are diagnosed globally in every year. Liver fibrosis often leads to cirrhosis, hepatocellular carcinoma and progress towards liver failure which results due to excessive deposition of extracellular matrix (ECM) proteins, especially collagen type-1 contributed by hepatic stellate cells. The current study is based on for analyzing the molecular basis of liver fibrosis so that, it will be helpful for finding its route cause in cellular level which will guide as a future direction for developing new theranostic approaches for the early diagnosis of liver fibrosis.


Biomedicines ◽  
2021 ◽  
Vol 9 (11) ◽  
pp. 1712
Author(s):  
Corina Vater ◽  
Elisabeth Mehnert ◽  
Henriette Bretschneider ◽  
Julia Bolte ◽  
Lisa Findeisen ◽  
...  

Difficulties in treating pseudarthrosis and critical bone defects are still evident in physicians’ clinical routines. Bone morphogenetic protein 2 (BMP-2) has shown promising osteoinductive results but also considerable side effects, not unexpected given that it is a morphogen. Thus, the bone regenerative potential of the novel selective, non-morphogenic EP4 prostaglandin receptor agonist KMN-159 was investigated in this study. Therefore, mineralized collagen type-1 matrices were loaded with different amounts of BMP-2 or KMN-159 and implanted into a 5 mm critical-sized femoral defect in rats. After 12 weeks of observation, micro-computed tomography scans were performed to analyze the newly formed bone volume (BV) and bone mineral density (BMD). Histological analysis was performed to evaluate the degree of defect healing and the number of vessels, osteoclasts, and osteoblasts. Data were evaluated using Kruskal-Wallis followed by Dunn’s post hoc test. As expected, animals treated with BMP-2, the positive control for this model, showed a high amount of newly formed BV as well as bone healing. For KMN-159, a dose-dependent effect on bone regeneration could be observed up to a dose optimum, demonstrating that this non-morphogenic mechanism of action can stimulate bone formation in this model system.


2021 ◽  
Vol 22 (22) ◽  
pp. 12391
Author(s):  
Woojin Na ◽  
Min-Kyung Kang ◽  
Sin-Hye Park ◽  
Dong Yeon Kim ◽  
Su Yeon Oh ◽  
...  

The imbalance between bone resorption and bone formation in favor of resorption results in bone loss and deterioration of bone architecture. Osteoblast differentiation is a sequential event accompanying biogenesis of matrix vesicles and mineralization of collagen matrix with hydroxyapatite crystals. Considerable efforts have been made in developing naturally-occurring plant compounds, preventing bone pathologies, or enhancing bone regeneration. Coumarin aesculetin inhibits osteoporosis through hampering the ruffled border formation of mature osteoclasts. However, little is known regarding the effects of aesculetin on the impairment of matrix vesicle biogenesis. MC3T3-E1 cells were cultured in differentiation media with 1–10 μM aesculetin for up to 21 days. Aesculetin boosted the bone morphogenetic protein-2 expression, and alkaline phosphatase activation of differentiating MC3T3-E1 cells. The presence of aesculetin strengthened the expression of collagen type 1 and osteoprotegerin and transcription of Runt-related transcription factor 2 in differentiating osteoblasts for 9 days. When ≥1–5 μM aesculetin was added to differentiating cells for 15–18 days, the induction of non-collagenous proteins of bone sialoprotein II, osteopontin, osteocalcin, and osteonectin was markedly enhanced, facilitating the formation of hydroxyapatite crystals and mineralized collagen matrix. The induction of annexin V and PHOSPHO 1 was further augmented in ≥5 μM aesculetin-treated differentiating osteoblasts for 21 days. In addition, the levels of tissue-nonspecific alkaline phosphatase and collagen type 1 were further enhanced within the extracellular space and on matrix vesicles of mature osteoblasts treated with aesculetin, indicating matrix vesicle-mediated bone mineralization. Finally, aesculetin markedly accelerated the production of thrombospondin-1 and tenascin C in mature osteoblasts, leading to their adhesion to preformed collagen matrix. Therefore, aesculetin enhanced osteoblast differentiation, and matrix vesicle biogenesis and mineralization. These findings suggest that aesculetin may be a potential osteo-inductive agent preventing bone pathologies or enhancing bone regeneration.


2021 ◽  
Vol 6 (2) ◽  
pp. 126
Author(s):  
Sandy Christiono ◽  
Welly Anggarani

Background: Tooth development during embryonic period is a complex process and requires adequate nutrients for the formation of healthy dental tissues. Kallikrein-related peptidase-4 (KLK-4) and collagen type 1 (Coll-1) are serine proteinases secreted by ameloblast during the transition and maturation stages of the amelogenesis processes, functioning to degrade the protein matrixes, so that the enamel can reach its final hardness. Pregnancy milk contains various nutrients expected to increase the KLK-4 expression of ameloblast cells in tooth development processes Purpose: This study aimed at determining the influence of pregnancy milk on the KLK-4 and collagen type 1 (Coll-1) expression of ameloblast cells in the tooth development processes.study Method The research subjects comprised of 10 pregnant female mice (Mus Musculus L.) that were divided into: control group (given sterile aquadest) and treatment group (given pregnancy milk + sterile aquadest) for 18 days followed by the  collection of the tooth germ. The specimens were then stained using Imunnohistochemistry to see the KLK-4 and Coll-1 expressions. The data were analyzed using a pathway analysis. Result: The average KLK-4 and Coll-1 expression in the treatment group were higher than those in the control group. Based the pathway analysis, there were direct correlation of Pregnancy milk with Coll-1 expression and that with KLK-4 and Coll-1 expression as well as indirect correlation of pregnancy milk with KLK-4 expression. Conclusion: Pregnancy milk influences the Kallikrein-related peptidase-4 (KLK-4) and Coll-1 expression of ameloblast cells in the tooth development of the mice’s fetusesKeywords: Coll-1 pregnancy milk, Kallikrein-related peptidase-4 (KLK-4), Tooth development


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Eri Takahashi ◽  
Junji Saruwatari ◽  
Tomokazu Fujimoto ◽  
Yuki Tanoue ◽  
Takaichi Fukuda ◽  
...  

AbstractTrabecular meshwork (TM) and Schlemm’s canal (SC) are the main structures within the conventional outflow pathway, and TM cells and SC endothelial (SCE) cells are essential for controlling intraocular pressure. To examine the interaction between TM cells and SCE cells, we investigated whether exosomes contribute to intercellular communication. Additionally, TM cells in glaucoma acquire mesenchymal characteristics in response to transforming growth factor (TGF)-β2 and extracellular matrix proteins such as collagen type 1 (Col-1); these changes result in increased resistance of aqueous outflow. In this study, we stimulated TM cells with TGF-β2 and Col-1 and characterized the exosomal miRNAs (exomiRs) released in response to each stimulus. Isolated exosomes were rich in miRNAs, with downregulated miR-23a-5p and upregulated miR-3942-5p and miR-7515 levels following Col-1 or TGF-β2 stimulation. Next, a miRNA-mRNA network under TGF-β2 stimulation was constructed. There were no connections among the 3 miRNAs and predicted genes under Col-1 stimulation. GO and KEGG analyses revealed that the identified miRNAs were associated with various signaling pathways, including the inflammatory response. Interestingly, SCE cells treated with miR-7515 mimic showed increased VEGFA, VEGFR2, PECAM, and Tie2 expression. Ultrastructures typical of exosomes and positive staining for exosomal markers were observed in human TM cells. Our data showed that TM cells may communicate with SCE cells via exomiRs and that miR-7515 may be important for SCE cell reprogramming.


2021 ◽  
Vol 27 (5) ◽  
pp. 1152-1158
Author(s):  
Seo-Jin Yang ◽  
Kyung-Min Kim ◽  
Ji-Won Song ◽  
Seung-Hun Lee

In this study, we developed Dermabiotics HDB1102 using Lactobacillus gasseri HDB1102 to relieve skin irritation caused by particulate matter (PM). L. gasseri HDB1102 was provided from cell bank and identified by 16S ribosomal RNA gene sequencing. Dermabiotics HDB1102 was manufactured by heating, centrifuging, and filtering culture medium of L. gasseri HDB1102. When 0-2.5%(v/v) Dermabiotics HDB1102 was treated, cytotoxicity on normal human epidermal keratinocytes (NHEKs) and human fibroblast was not observed by using MTT assay. The mRNA expression levels of cytochrome P450 1A1 (CYP1A1), interleukin (IL)-1β, and IL-8 on Dermabiotics HDB1102 treated cells decreased compared to PM-treated cells. Conversely, the mRNA expressions of aquaporin-3 (AQP-3), CD-44, and collagen type 1 (COL-1) on Dermabiotics HDB1102 treated cells were dose-dependent higher than those of non-treated cells. These results indicated that Dermabiotics HDB1102 have anti-inflammatory, moisturizing, and anti-wrinkle effects and could be used as a potential cosmetic ingredient to alleviate skin symptoms caused by PM.


Author(s):  
Regina Komsa Penkova ◽  
Galya Stavreva ◽  
Stanimir Kyurkchiev ◽  
Kalina Belemezova ◽  
Svetla Todinova ◽  
...  

Abstract: The effect of collagen type 1 (Col I) oxidation on Adipose Tissue-Derived Mesenchymal Stem Cells (ADMSCs) remodeling is described as a model for acute oxidative stress. Morphologically, remodeling was presented by a mechanical rearrangement of adsorbed FITC-Col I and a trend for its organization in a fibril-like pattern - a process strongly abrogated in oxidized samples, but without visible changes in cell morphology. The cellular proteolytic activity was quantified in multiple samples utilizing fluorescence de-quenching (FRET effect). In the presence of ADMSCs a significant increase of native FITC-Col I fluorescence was observed, almost absent in the oxidized samples. Parallel studies in cell-free systems confirmed the enzymatic de-quenching of native FITC-Col I by Clostridial collagenase, again showing significant inhibition in oxidized samples. The structural changes in the oxidized Col I was further studied by Differential Scanning Calorimetry: an additional endotherm at 33.6°C along with the typical for native Col I at 40.5°C with sustained enthalpy (∆H) was observed in oxidized samples. Collectively, it has been evidenced that remodeling of Col I by ADMSCs is altered upon oxidation due to the intrinsic changes in the protein structure, thus presenting a novel mechanism for the control of stem cells' behavior toward collagen.


2021 ◽  
Vol 22 (20) ◽  
pp. 11011
Author(s):  
Ingrid Zahn ◽  
Tobias Braun ◽  
Clemens Gögele ◽  
Gundula Schulze-Tanzil

Spheroid culture might stabilize the ligamentocyte phenotype. Therefore, the phenotype of lapine cruciate ligamentocyte (L-CLs) minispheroids prepared either by hanging drop (HD) method or by using a novel spheroid plate (SP) and the option of methyl cellulose (MC) for tuning spheroid formation was tested. A total of 250 and 1000 L-CLs per spheroid were seeded as HDs or on an SP before performing cell viability assay, morphometry, gene expression (qRT-PCR) and protein immunolocalization after 7 (HD/SP) and 14 (SP) days. Stable and viable spheroids of both sizes could be produced with both methods, but more rapidly with SP. MC accelerated the formation of round spheroids (HD). Their circular areas decreased significantly during culturing. After 7 days, the diameters of HD-derived spheroids were significantly larger compared to those harvested from the SP, with a tendency of lower circularity suggesting an ellipsoid shape. Gene expression of decorin increased significantly after 7 days (HD, similar trend in SP), tenascin C tended to increase after 7 (HD/SP) and 14 days (SP), whereas collagen type 1 decreased (HD/SP) compared to the monolayer control. The cruciate ligament extracellular matrix components could be localized in all mini-spheroids, confirming their conserved expression profile and their suitability for ligament tissue engineering.


Sign in / Sign up

Export Citation Format

Share Document