mixing entropy
Recently Published Documents


TOTAL DOCUMENTS

51
(FIVE YEARS 10)

H-INDEX

11
(FIVE YEARS 2)

2022 ◽  
Vol 142 ◽  
pp. 107436
Author(s):  
Jie Wang ◽  
Yu Tang ◽  
Shun Li ◽  
Zhouran Zhang ◽  
Yicong Ye ◽  
...  
Keyword(s):  

Author(s):  
Елена Сергеевна Карташинская

Предложен метод оценки площади A, приходящейся на молекулу монослоя ПАВ, вначале перехода от жидко-растянутой к жидко-конденсированной фазе на основе двух теоретических моделей. Термодинамическая модель поведения дифильных монослоев с учетом неидеальности энтропии смешения позволяет оценить величину энергий Гиббса кластеризации ПАВ на основе П-А-изотерм, полученных при различных температурах. С другой стороны квантово-химический подход также дает возможность рассчитать данный термодинамический параметр и оценить структурные особенности получаемых монослоев. Величины энергий Гиббса кластеризации малых ассоциатов ПАВ и геометрических параметров элементарных ячеек монослоев были рассчитаны ранее с помощью квантово-химического полуэмпирического метода РМ3 для восьми классов дифильных соединений: насыщенные и этоксилированные спирты, насыщенные и цис-моноеновые карбоновые кислоты, α -гидрокси- и α -аминокислоты, N -ацилпроизводные аланина и диалкилзамещенные меламина. Эти параметры были использованы в термодинамической модели с учетом неидеальности энтропии смешения для расчета величин A. Оцененные значения A адекватно отражают экспериментальную температурную зависимость для рассматриваемого фазового перехода: с ростом температуры площадь, приходящаяся на молекулу ПАВ фиксированной длины цепи, уменьшается, и, наоборот, с ростом длины цепи ПАВ при фиксированной температуре величина A увеличивается. Это позволяет использовать предложенный подход в прогностических целях. A method is proposed to estimate the area per molecule of a surfactant monolayer A at the transition onset of the liquid-expanded to a liquid-condensed phase based on two theoretical models. A thermodynamic model with account for nonideality of the mixing entropy makes it possible to estimate the Gibbs energy of surfactant clusterization using the П-A isotherms obtained at different temperatures. On the other hand, the quantum-chemical approach also makes it possible to calculate this thermodynamic parameter and assess the structural features of the obtained monolayers. The values of the Gibbs clusterization energies of small surfactant associates and the geometric parameters of the monolayer unit cells were previously calculated using the quantum-chemical semiempirical method PM3 for eight classes of amphiphilic compounds: saturated and ethoxylated alcohols, saturated and cis-monoenic carboxylic acids, α-hydroxylic and α-amino acids, N -acyl-substituted alanines and dialkyl-substituted melamine. These parameters are used in the thermodynamic model with account for nonideality of the mixing entropy to calculate A. The estimated values Aadequately reflect the experimental temperature dependence for the considered phase transition: with an increase in temperature the area per surfactant molecule of a fixed chain length decreases, and vice versa, with an increase in the surfactant chain length at a fixed temperature, the value A increases. This makes it possible to use the proposed approach for prognostic purposes.


2021 ◽  
Author(s):  
Jie Wang ◽  
Yu Tang ◽  
Shun Li ◽  
Yicong Ye ◽  
Li’an Zhu ◽  
...  
Keyword(s):  

2020 ◽  
Vol 199 ◽  
pp. 107-115
Author(s):  
Yu-Ting Hsiao ◽  
Chi-Huan Tung ◽  
Su-Jien Lin ◽  
Jien-Wei Yeh ◽  
Shou-Yi Chang

2020 ◽  
Vol 10 (16) ◽  
pp. 5537
Author(s):  
Felipe Galleguillos ◽  
Luis Cáceres ◽  
Lindley Maxwell ◽  
Álvaro Soliz

In the process of finding new forms of energy extraction or recovery, the use of various natural systems as potential clean and renewable energy sources has been examined. Blue energy is an interesting energy alternative based on chemical energy that is spontaneously released when mixing water solutions with different salt concentrations. This occurs naturally in the discharge of rivers into ocean basins on such a scale that it justifies efforts for detailed research. This article collects the most relevant information from the latest publications on the topic, focusing on the use of the mixing entropy battery (MEB) as an electrochemical ion pumping device and the different technological means that have been developed for the conditions of this process. In addition, it describes various practices and advances achieved by various researchers in the optimization of this device, in relation to the most important redox reactions and the cathode and anodic materials used for the recovery of blue energy or salinity gradient energy.


ACS Omega ◽  
2019 ◽  
Vol 4 (7) ◽  
pp. 11785-11790 ◽  
Author(s):  
Meng Ye ◽  
Mauro Pasta ◽  
Xing Xie ◽  
Kristian L. Dubrawski ◽  
Jianqaio Xu ◽  
...  

2019 ◽  
Vol 295 ◽  
pp. 43-49 ◽  
Author(s):  
Ryota Sogabe ◽  
Yosuke Goto ◽  
Tomohiro Abe ◽  
Chikako Moriyoshi ◽  
Yoshihiro Kuroiwa ◽  
...  

Entropy ◽  
2019 ◽  
Vol 21 (5) ◽  
pp. 536 ◽  
Author(s):  
Zahra Sotoudeh

In this paper, we examine Khinchin’s entropy for two weakly nonlinear systems of oscillators. We study a system of coupled Duffing oscillators and a set of Henon–Heiles oscillators. It is shown that the general method of deriving the Khinchin’s entropy for linear systems can be modified to account for weak nonlinearities. Nonlinearities are modeled as nonlinear springs. To calculate the Khinchin’s entropy, one needs to obtain an analytical expression of the system’s phase volume. We use a perturbation method to do so, and verify the results against the numerical calculation of the phase volume. It is shown that such an approach is valid for weakly nonlinear systems. In an extension of the author’s previous work for linear systems, a mixing entropy is defined for these two oscillators. The mixing entropy is the result of the generation of entropy when two systems are combined to create a complex system. It is illustrated that mixing entropy is always non-negative. The mixing entropy provides insight into the energy behavior of each system. The limitation of statistical energy analysis motivates this study. Using the thermodynamic relationship of temperature and entropy, and Khinchin’s entropy, one can define a vibrational temperature. Vibrational temperature can be used to derive the power flow proportionality, which is the backbone of the statistical energy analysis. Although this paper is motivated by statistical energy analysis application, it is not devoted to the statistical energy analysis of nonlinear systems.


2019 ◽  
Vol 234 ◽  
pp. 291-293 ◽  
Author(s):  
Dechuan Yu ◽  
Xue Li ◽  
Xiaoyu Wu ◽  
Shengli Li
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document