apéry set
Recently Published Documents


TOTAL DOCUMENTS

6
(FIVE YEARS 4)

H-INDEX

2
(FIVE YEARS 1)

2020 ◽  
Vol 26 (4) ◽  
pp. 63-67
Author(s):  
Antoine Mhanna ◽  

In this note we explain the two pseudo-Frobenius numbers for \langle m^2-n^2,m^2+n^2,2mn\rangle where m and n are two coprime numbers of different parity. This lets us give an Apéry set for these numerical semigroups.


2019 ◽  
Vol 29 (5) ◽  
pp. 345-350
Author(s):  
Ze Gu

Abstract Given a numerical semigroup S, a nonnegative integer a and m ∈ S ∖ {0}, we introduce the set C(S, a, m) = {s + aw(s mod m) | s ∈ S}, where {w(0), w(1), ⋯, w(m – 1)} is the Apéry set of m in S. In this paper we characterize the pairs (a, m) such that C(S, a, m) is a numerical semigroup. We study the principal invariants of C(S, a, m) which are given explicitly in terms of invariants of S. We also characterize the compositions C(S, a, m) that are symmetric, pseudo-symmetric and almost symmetric. Finally, a result about compliance to Wilf’s conjecture of C(S, a, m) is given.


2014 ◽  
Vol 91 (1) ◽  
pp. 139-158 ◽  
Author(s):  
Guadalupe Márquez-Campos ◽  
Ignacio Ojeda ◽  
José M. Tornero
Keyword(s):  

2005 ◽  
Vol 55 (3) ◽  
pp. 755-772 ◽  
Author(s):  
J. C. Rosales ◽  
P. A. Garcia-Sanchez ◽  
J. I. Garcia-Garcia ◽  
M. B. Branco

Sign in / Sign up

Export Citation Format

Share Document