almost kenmotsu manifold
Recently Published Documents


TOTAL DOCUMENTS

8
(FIVE YEARS 2)

H-INDEX

3
(FIVE YEARS 0)

2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Dibakar Dey ◽  
Pradip Majhi

Abstract The object of the present paper is to study some types of semisymmetry conditions on two classes of almost Kenmotsu manifolds. It is shown that a (k, µ)-almost Kenmotsu manifold satisfying the curvature condition Q · R = 0 is locally isometric to the hyperbolic space ℍ2 n +1(−1). Also in (k, µ)-almost Kenmotsu manifolds the following conditions: (1) local symmetry (∇R = 0), (2) semisymmetry (R·R = 0), (3) Q(S, R) = 0, (4) R·R = Q(S, R), (5) locally isometric to the hyperbolic space ℍ2 n +1(−1) are equivalent. Further, it is proved that a (k, µ)′ -almost Kenmotsu manifold satisfying Q · R = 0 is locally isometric to ℍ n +1(−4) × ℝ n and a (k, µ)′ -almost Kenmotsu manifold satisfying any one of the curvature conditions Q(S, R) = 0 or R · R = Q(S, R) is either an Einstein manifold or locally isometric to ℍ n +1(−4) × ℝ n . Finally, an illustrative example is presented.


Filomat ◽  
2021 ◽  
Vol 35 (7) ◽  
pp. 2293-2301
Author(s):  
V. Venkatesha ◽  
Aruna Kumara ◽  
Devaraja Naik

In this paper, we obtain that a Ricci recurrent 3-dimensional almost Kenmotsu manifold with constant scalar curvature satisfying ??h = 0,h ? 0, is locally isometric to the Riemannian product H2(-4)xR.


Filomat ◽  
2017 ◽  
Vol 31 (19) ◽  
pp. 6211-6218 ◽  
Author(s):  
Young Suh ◽  
Krishanu Mandal ◽  
Uday De

The present paper deals with invariant submanifolds of CR-integrable almost Kenmotsu manifolds. Among others it is proved that every invariant submanifold of a CR-integrable (k,?)'-almost Kenmotsu manifold with k < -1 is totally geodesic. Finally, we construct an example of an invariant submanifold of a CR-integrable (k,?)'-almost Kenmotsu manifold which is totally geodesic.


Filomat ◽  
2017 ◽  
Vol 31 (15) ◽  
pp. 4695-4702 ◽  
Author(s):  
Yaning Wang ◽  
Wenjie Wang

In this paper, we prove that if the metric of a three-dimensional (k,?)'-almost Kenmotsu manifold satisfies the Miao-Tam critical condition, then the manifold is locally isometric to the hyperbolic space H3(-1). Moreover, we prove that if the metric of an almost Kenmotsu manifold with conformal Reeb foliation satisfies the Miao-Tam critical condition, then the manifold is either of constant scalar curvature or Einstein. Some corollaries of main results are also given.


Filomat ◽  
2016 ◽  
Vol 30 (14) ◽  
pp. 3807-3816
Author(s):  
Yaning Wang ◽  
Wenjie Wang

In this paper, it is proved that on a generalized (k,?)'-almost Kenmotsu manifold M2n+1 of dimension 2n + 1, n > 1, the conditions of local symmetry, semi-symmetry, pseudo-symmetry and quasi weak-symmetry are equivalent and this is also equivalent to that M2n+1 is locally isometric to either the hyperbolic space H2n+1(-1) or the Riemannian product Hn+1(-4)xRn. Moreover, we also prove that a generalized (k,?)-almost Kenmotsu manifold of dimension 2n + 1, n > 1, is pseudo-symmetric if and only if it is locally isometric to the hyperbolic space H2n+1(-1).


2015 ◽  
Vol 98 (112) ◽  
pp. 227-235 ◽  
Author(s):  
Yaning Wang ◽  
Uday De ◽  
Ximin Liu

If the metric of an almost Kenmotsu manifold with conformal Reeb foliation is a gradient Ricci soliton, then it is an Einstein metric and the Ricci soliton is expanding. Moreover, let (M2n+1,?,?,?,g) be an almost Kenmotsu manifold with ? belonging to the (k,?)?-nullity distribution and h h?0. If the metric g of M2n+1 is a gradient Ricci soliton, then M2n+1 is locally isometric to the Riemannian product of an (n+1)-dimensional manifold of constant sectional curvature -4 and a at n-dimensional manifold, also, the Ricci soliton is expanding with ? = 4n.


Filomat ◽  
2014 ◽  
Vol 28 (4) ◽  
pp. 839-847 ◽  
Author(s):  
Yaning Wang ◽  
Ximin Liu

In this paper, we prove that if there exists a second order symmetric parallel tensor on an almost Kenmotsu manifold (M2n+1, ?, ?, ?, g) whose characteristic vector field ? belongs to the (k,?)'-nullity distribution, then either M2n+1 is locally isometric to the Riemannian product of an (n+1)-dimensional manifold of constant sectional curvature -4 and a flat n-dimensional manifold, or the second order parallel tensor is a constant multiple of the associated metric tensor of M2n+1. Furthermore, some properties of an almost Kenmotsu manifold admitting a second order parallel tensor with ? belonging to the (k,?)-nullity distribution are also obtained.


ISRN Geometry ◽  
2013 ◽  
Vol 2013 ◽  
pp. 1-6
Author(s):  
Yaning Wang ◽  
Ximin Liu

This paper deals with the classification of a 3-dimensional almost Kenmotsu manifold satisfying certain geometric conditions. Moreover, by applying our main classification theorem, we obtain some suffcient conditions for an almost Kenmotsu manifold of dimension 3 to be an Einstein-Weyl manifold.


Sign in / Sign up

Export Citation Format

Share Document