robust sensing
Recently Published Documents


TOTAL DOCUMENTS

68
(FIVE YEARS 25)

H-INDEX

11
(FIVE YEARS 2)

Sensors ◽  
2021 ◽  
Vol 21 (22) ◽  
pp. 7437
Author(s):  
Siheng Xiang ◽  
Hui You ◽  
Xinxiang Miao ◽  
Longfei Niu ◽  
Caizhen Yao ◽  
...  

Stretchable optical fiber sensors (SOFSs), which are promising and ultra-sensitive next-generation sensors, have achieved prominent success in applications including health monitoring, robotics, and biological–electronic interfaces. Here, we report an ultra-sensitive multi-functional optical micro/nanofiber embedded with a flexible polydimethylsiloxane (PDMS) membrane, which is compatible with wearable optical sensors. Based on the effect of a strong evanescent field, the as-fabricated SOFS is highly sensitive to strain, achieving high sensitivity with a peak gauge factor of 450. In addition, considering the large negative thermo-optic coefficient of PDMS, temperature measurements in the range of 30 to 60 °C were realized, resulting in a 0.02 dBm/°C response. In addition, wide-range detection of humidity was demonstrated by a peak sensitivity of 0.5 dB/% RH, with less than 10% variation at each humidity stage. The robust sensing performance, together with the flexibility, enables the real-time monitoring of pulse, body temperature, and respiration. This as-fabricated SOFS provides significant potential for the practical application of wearable healthcare sensors.


Sensors ◽  
2021 ◽  
Vol 21 (21) ◽  
pp. 7218
Author(s):  
Manaram Gnanasekera ◽  
Jay Katupitiya ◽  
Andrey V. Savkin ◽  
A.H.T. Eranga De De Silva

This paper proposes an algorithm that will allow an autonomous aerial drone to approach and follow a steady or moving herd of cattle using only range measurements. The algorithm is also insensitive to the complexity of the herd’s movement and the measurement noise. Once arrived at the herd of cattle, the aerial drone can follow it to a desired destination. The primary motivation for the development of this algorithm is to use simple, inexpensive and robust sensing hence range sensors. The algorithm does not depend on the accuracy of the range measurements, rather the rate of change of range measurements. The proposed method is based on sliding mode control which provides robustness. A mathematical analysis, simulations and experimental results with a real aerial drone are presented to demonstrate the effectiveness of the proposed method.


Biomolecules ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 948
Author(s):  
Le-Minh-Tu Phan ◽  
Sungbo Cho

The early diagnosis of Alzheimer’s disease (AD) remains a challenge for medical scientists worldwide, leading to a number of research efforts that focus on biosensor development for AD biomarkers. However, the application of these complicated biosensors is limited in medical diagnosis, due to the difficulties in robust sensing platform development, high costs, and the necessity for technical professionals. We successfully developed a robust straightforward manufacturing process for the fabrication of multi-chamber paper devices using the wax printing method and exploited it to detect amyloid beta 42 oligomers (AβO42, a significant biomarker of AD) using copper-enhanced gold nanoprobe colorimetric immunoblotting. Small hydrophilic reaction chambers could concentrate the target sample to the desired size to improve the sensing performance. The copper-enhanced gold nanoprobe immunoblot using the designed multi-chamber platform exhibited a highly sensitive performance with a limit of detection of 320 pg/mL by the naked eye and 23.7 pg/mL by a smartphone camera. This process from sensing manufacture to sensing conduction is simple to perform whenever medical technicians require time- and cost-savings, without complicated instruments or the need for technical professionals, making it feasible to serve as a diagnostic tool worldwide for the early monitoring of AD and scalable devices for the sensing application of various biomarkers in clinical settings.


2021 ◽  
Vol 21 (4) ◽  
pp. 2495-2499
Author(s):  
Hoang Si Hong ◽  
Tran Vinh Hoang

We developed a novel sensor structure by synthesizing Pd nanocubes (NCs) decorated on ZnO nanostructures (NSs) applied to resistive-type H2 gas sensor with micro-length in sensing channel. The ZnO NSs were selectively grown between micro-size finger-like interdigital electrodes through microelectromechanical technology. The novel H2 sensor structure with the sensing channel was reduced to micro-size by this proposed method to obtain a sensor with fast response/recovery time. The as-prepared structure exhibited robust sensing performance with a response of 11% at optimal temperature of 150 °C, good linearity, and fast response/recovery time within 10 s. The speed of chemisorption through the diffusion pathway in Pd NCs combined with micro-length in sensing channel in sensor showed fast response and recovery times of 9 and 15 s, respectively, toward 10,000 ppm (1%) H2 at 150 °C. The result showed approximate linearity response in H2 concentration range of 5÷10,000 ppm and a large operating temperature range from room temperature to 200 °C.


Research ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Lijuan Song ◽  
Zheng Zhang ◽  
Xiaochen Xun ◽  
Liangxu Xu ◽  
Fangfang Gao ◽  
...  

Electronic skin (e-skin) with skin-like flexibility and tactile sensation will promote the great advancements in the fields of wearable equipment. Thus, the multifunction and high robustness are two important requirements for sensing capability of the e-skin. Here, a fully organic self-powered e-skin (FOSE-skin) based on the triboelectric nanogenerator (TENG) is developed. FOSE-skin based on TENG can be fully self-healed within 10 hours after being sheared by employing the self-healing polymer as a triboelectric layer and ionic liquid with the temperature sensitivity as an electrode. FOSE-skin based on TENG has the multifunctional and highly robust sensing capability and can sense the pressure and temperature simultaneously. The sensing capability of the FOSE-skin based on TENG can be highly robust with no changes after self-healing. FOSE-skin based on TENG can be employed to detect the arm swing, the temperature change of flowing water, and the motion trajectory. This work provides a new idea for solving the issues of monofunctional and low robust sensing capability for FOSE-skin based on TENG, which can further promote the application of wearable electronics in soft robotics and bionic prosthetics.


Sensors ◽  
2021 ◽  
Vol 21 (1) ◽  
pp. 228
Author(s):  
Idan Fishel ◽  
Yoni Amit ◽  
Neta Shvil ◽  
Anton Sheinin ◽  
Amir Ayali ◽  
...  

During hundreds of millions of years of evolution, insects have evolved some of the most efficient and robust sensing organs, often far more sensitive than their man-made equivalents. In this study, we demonstrate a hybrid bio-technological approach, integrating a locust tympanic ear with a robotic platform. Using an Ear-on-a-Chip method, we manage to create a long-lasting miniature sensory device that operates as part of a bio-hybrid robot. The neural signals recorded from the ear in response to sound pulses, are processed and used to control the robot’s motion. This work is a proof of concept, demonstrating the use of biological ears for robotic sensing and control.


2020 ◽  
Vol 67 (12) ◽  
pp. 3352-3356 ◽  
Author(s):  
Yongliang Zhou ◽  
Hao Cai ◽  
Bo Liu ◽  
Weisheng Zhao ◽  
Jun Yang
Keyword(s):  

2020 ◽  
Vol 48 (20) ◽  
pp. 11799-11811
Author(s):  
Natascha Gödecke ◽  
Jan Riedel ◽  
Sabrina Herrmann ◽  
Sara Behme ◽  
Ulfert Rand ◽  
...  

Abstract Mammalian first line of defense against viruses is accomplished by the interferon (IFN) system. Viruses have evolved numerous mechanisms to reduce the IFN action allowing them to invade the host and/or to establish latency. We generated an IFN responsive intracellular hub by integrating the synthetic transactivator tTA into the chromosomal Mx2 locus for IFN-based activation of tTA dependent expression modules. The additional implementation of a synthetic amplifier module with positive feedback even allowed for monitoring and reacting to infections of viruses that can antagonize the IFN system. Low and transient IFN amounts are sufficient to trigger these amplifier cells. This gives rise to higher and sustained—but optionally de-activatable—expression even when the initial stimulus has faded out. Amplification of the IFN response induced by IFN suppressing viruses is sufficient to protect cells from infection. Together, this interfaced sensor/actuator system provides a toolbox for robust sensing and counteracting viral infections.


Sign in / Sign up

Export Citation Format

Share Document